
Welcome  back  to  the  lecture  for  the  introductory  chemistry  using
Schrodinger and quantum mechanical methods for the atomic structure.  So
what  we  would  do  in  this  and  in  the  next  segment  is  introduce  the
Schrodinger equation and also do a model problem using the particle in a
one dimensional box model, this is one of the simplest models that we have.
Let's take a quick look at the Schrodinger equation.  In the lecture earlier I
mentioned that I would be talking about the time independent Schrodinger
equation in which this quantity was referred to as the Hamiltonian and this as
a  constant,  but  with  dimensions  of  energy.   And  the  function  Psi  is  the
function that we wanted to find out by solving an equation of this sort, but
we  don't  know  what  this  is  right  now,  we  have  to  introduce  that  to
understand how this equation comes about or what is its origin.  We can do a
very simple example of a standing wave.  And you know that a standing
wave is something that happens between fixed points and the wave motion
of  a  particle  fixed to the end,  something of  that  kind,  and let  me put  it
precisely so that the wave when it reflects it still follows and therefore the
standing wave remains  as  a  wave and the amplitudes don't  cancel  each
other.  So if you… if you want to look at the axis this is the coordinate or the
x-axis that you might want to talk about and this is the axis for the amplitude
of the wave at any position X between some fixed points.  Obviously for this
wave the length of  the repeating unit  is  obviously  called the wavelength
lambda and here we have 1 2 yes 2 this is 1 and this is 2 and then you have
3  and  3  and  a  ½,  it  has  to  be  either  exactly  1/2  wavelength  or  a  full
wavelength for this to be a standing wave, okay.  Now the equation for the
standing wave for the amplitude a, or let us call that amplitude as Psi, in
relation to what we have here, we will see later that this Psi is not necessarily
the same as the Psi that we talked about, but for that Psi, if we have the
maximum amplitude as A, this quantity is A, then the wave function Psi of X
is  written as A sine 2 Pi  by lambda of  X,  this  is  something that  you are
familiar  with  for  a  standing  wave.   Now  this  quantity  Psi,  when  you
differentiate twice it satisfies the derivative equation, let's do that for the
first derivative D Psi by DX as 2 Pi by Lambda times A sin cos 2 Pi by lambda
X and the second derivative D square Psi by DX square = minus 4 Pi square
by lambda square… square Psi of X because this will  become sin 2 Pi by
lambda of X and that's the same thing as Psi of X, therefore you see that the
standing wave satisfies the differential equation D square Psi by DX square
where  Psi  is  the  amplitude  of  the  wave  with  lambda,  the  wave  length
associated with that.  Now the Broglie if you remember in the lecture earlier,
gave an expression for the matter waves lambda in terms of the momentum
of the particle, in terms of momentum of the particle you have here and
therefore if  we write the wave equation it's  Dr. square Psi by DX square,
which is equal to minus 4 Pi square by H square multiplied by P square Psi or
minus H bar square, we know that H by 2 Pi is H-bar, therefore if we bring
that in, it is minus H bar square D square Psi by DX square = P squared Psi.
This is the equation for the standing wave using the De Broglie idea and the
quantization idea,  namely that  the energy quantum for  material  particles



light  etcetera  given  in  terms  of  the  Planck's  constant,  so  the  Planck's
constant enters naturally here in describing what happens to the momentum
square on the wave function is the same thing as the sec derivative on the
wave function multiplied by minus H bar square.
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Therefore if we write the kinetic energy P square by 2 M Psi that turns out to
be minus H bar square by 2M D square by DX square Psi.  This being the
kinetic energy, this is the difference between, if there is a potential energy V
then it's a difference between the total energy E and the potential energy V,
which may be a function of X for whatever, if there is a potential, we have to
consider that, therefore what happens is P square by 2 M is nothing but E
minus V on Psi, giving you minus H bar square by 2 M D square by DX square
Psi.  Now one last step and then you see the equation H Psi is equal to E Psi
making sense to us, because now if you bring the V here, just rewrite the
equation you have minus H bar square by 2 M D square Psi by DX square
plus V of Psi is equal to E of Psi, please remember we had already written this
as the kinetic energy and this is on Psi.  This is the potential energy on Psi
and therefore you see that this is nothing but kinetic energy plus potential
energy on Psi, giving you a constant times E Psi and so you see that this is
nothing but the Hamiltonian 1 Psi giving you E Psi.  This is a very simple



justification.  I don't think we can really say that we have derived it from any
fundamental principles or whatever, it's a justification to see from a simple
standing wave picture and using the de Broglie principle or the proposition
with the Planck's constant, it looks like the particle wave function satisfies
the equation Hamiltonian.  But the Hamiltonian looks somewhat hard.  It has
a derivative instead of the P square by 2M that we have, now we have put a
derivative here and therefore the Hamiltonian is a derivative acting on the
wave function and the potential, which is of course a function of the position
of  whatever  particle  or  the  system  that  you  talk  about.   The  potential
generally multiplies the wave function but the two together is actually an
operator acting on Psi.  The Hamiltonian operator acting on Psi giving you a
constant time Psi.  Schrodinger equation is a very specific equation for the
Hamiltonian  operator  and  such  equations  in  mathematics  are  known  as
Eigenvalue equations for  whatever quantities that  appear here.   Suppose
instead of H, it's any other operator that we are going to look at A Psi any
operator giving some constant times Psi.  Please remember  this constant
has to have the same dimension as the operator A here in the same way that
this constant has the energy dimension for the Hamiltonian operator which is
also energy.  Any such equation in which A can be measured experimentally
such equations are called Eigen value equations… Eigen value equations and
the Schrodinger equation, the time-independent Schrodinger equation is the
Eigen value equation for the Hamiltonian or the energy operator.  This is the
picture  that  you  have  to.   So  let  me  give  you  some  small  problems
associated with whatever we have done right after this, but then we will go
to the next part namely how do we solve this for the specific case of a simple
model.
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Now what's the model?  let's look at the model now of the particle in a one
dimensional box.  I have a small drawing here that tells you that we have a
particle in a finite region, the potentials are in finite at two points namely
points with X equal to 0 and the point X is equal  to L meaning that the
particle is confined to a region of a box of length L and the particle motion or
the particle coordinate is only one coordinate or one variable namely X.  Let's
assume for the time being that the potential inside the box is 0, so this is
what we call as the particle in a one dimensional box with infinite barriers
and what does this particle give you.
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Now let's look at the equations, we have minus H bar square by 2M D square
Psi by D X square plus V of Psi is equal to P of Psi.  if the potential is infinite
then Psi has to be 0 in order to satisfy that therefore at the boundaries X is
equal to 0, X is equal to L, the wave function Psi FX is 0.  Inside the box we
have V is 0, therefore what we have is minus H bar square by 2M D square
Psi by DX square is equal to E Psi.  The total energy, because there is no
potential inside the box.
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We shall solve this in a very quick manner namely D square Psi by DX square
plus a constant… a positive constant K squared Psi is equal to 0 where K
square is 2 M E by H bar square.  This is… the K square is positive obviously
and therefore what you have here is a simple derivative equation for second
order and you know such functions can be obtained, the solutions can be
obtained  from  either  trigonometric  function  or  the  exponential  with
imaginary argument. Let's use the trigonometric function namely a sin, let's
write that to be consistent we have a cos KX plus B sin KX, where A and B are
arbitrary constants… arbitrary constants.
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Now if you look at that solution with the boundary condition that you have
namely Psi of 0 is 0, immediately you have A is equal to 0, because cos KX is
1 and sin KX goes to 0, therefore A is equal to 0.  If you have Psi at Left,
which is the other extreme of the box, please remember this model at X is
equal to L at this point okay.  Therefore we have Psi of L is 0, which implies
that since A is already 0, Psi of X is B sine K L and that's equal to zero.  We
don't want B to be 0, because if A and B are 0, that's anyway it’s a trivial
solution  for  any  such  differential  equation,  doesn't  give  you  anything  of
interest, I think there's no meaning, there's no interpretation.  Therefore we
are going to consider the case obviously a non trivial solution, with B not
equal to 0, which means sin KL has to be 0 or KL has to be an integer times
Pi, N is an integer.
(Refer Slide Time: 15:00)



KL is equal to N Pi and N has to be, obviously we don't want N equal to 0,
which is also the case of triviality, and so what we have is N is equal to 1 2 3
etcetera integers or please remember K is equal to N Pi by L, look at this K
square  if  you  recall  is  2ME  by  H  bar  square,  therefore  this  gives  you
immediately  that M square Pi  square by L square is  equal  to 2M E by H
square  times  the  4  Pi  square  that  we  have,  cancel  things  off  and  you
immediately get the solution namely E is equal to H square M square by 8 M
L square and what is the solution for the wave function Psi of X is B sin KX,
which is B sin N Pi X by L.  Because K is N Pi by L okay.  So this is the simplest
solution, but two important results.  One is that the energy for the particle in
the  box  which  is  subject  to  boundary  conditions  that  the  wave  function
vanishes at some boundaries, subject to that the particle energy appears to
be  quantized,  is  not  arbitrary.   You  recall  the  dimension,  the  quantity  H
square by M square, H square by 8 ML square the quantity.
(Refer Slide Time: 16:45)



Has the dimension of the energy and it has the only two inputs, which is…
which are the inputs for this problem, namely the mass of the particle M and
the  length  of  the  box  Left,  and  the  other  constant  is  of  course  Planck's
constant.  So now the energy seems to be quantized in terms of the, the two
physical parameters that we introduced, which particle, a larger particle, a
heavier particle or a lighter particle, in a smaller box or in the larger box, but
with all the other conditions being the same namely potentials being zero
inside the potentials being in finite, given that you see that the energy is
discretized and the energy is in the units of H square by 8 ML square this is
the fundamental unit for this box and then it is 1 4 9 16 25, as the value of N
becomes 1 2 3 4 etc.  Therefore particle particle energies are discretized.
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The second part is the other, namely the wave function is given in terms of B
sine N Pi X by L.  Now what is this wave function, from the beginning of this
lecture  you  might  think  that  this  wave  function  is  essentially  a  function
telling you how the particle is oscillating, that's not true okay.  That picture
was a starting point for us to get an idea that the Schrodinger equation is like
this, the wave function that we have here is not a function representing how
the  particle  is  moving,  it  is  just  a  function  associated with  that  particle.
What's the meaning of it, Max Bourne gave the interpretation namely that
wave function by itself does not have any meaning, but Psi of X-square, Psi
Star Psi, in this case Psi is real, therefore Psi of X Psi of X are Psi squared of X.
In  a  small  interval  DX  gives  the  probability  of  the  particle  being  in  the
position between X and X plus DX.  The probability of locating the particle
between X and X plus DX, that's the number given by the product of the
wave function  with  itself  in  this  case,  because it's  real  that  Max  Bourne
suggested that Psi squared X DX gives the probability that the system we
found in the interval X and X plus DX, that's all there is to it.
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Therefore let me conclude immediately what D should be, because if Psi Star
X Psi X, which is the same as Psi of X square, with a DX is a probability, then
if you add all the probabilities from 0 to L, because the particle can have any
position between the endpoint, but not at the endpoint from anywhere as
close  to  the  endpoint  as  possible,  but  as  close  to  the  other  endpoint.
Therefore  if  you  integrate  the  total  probabilities,  this  being  a  continuous
function you have 0 to L Psi X square DX, that probability has to add to 1,
because we have made sure that the potentials are infinite in our model,
therefore the partner cannot we found outside of that region.  Therefore the
probability  that  the  particle  stays  inside  the  box  is  1.   This  gives  you
immediately a value for B, because you have B square sin square N Pi X by L,
DX between 0 and L, that's equal to 1, which gives you the value B = root 2
by L, okay.
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Therefore you have got two results for the particle in the box namely the
wave function is root 2 by L sin N Pi X by L and E, the particles energy is
given by H square N square by 8 M L square.  Now because the energy is
given by the quantum number N, let me use a highlighter here, because it's
given  by  N  and  N  can  take  any  number  of  values  and  for  that  N,  the
corresponding wave function is sin N Pi X by L, we see that there are many
solutions to the wave function and many solutions to the energy, this will
also  turn  out  to  be  a  general  property  when  we  solve  the  Hamiltonian
equation… the Schrodinger equation for the systems in all the other models,
that  in  one step,  you will  get  all  the different  types of… all  the possible
energies and all the possible wave functions and the best way to… I mean a
convenient way, I wouldn't call it the best way, a convenient way is to label
the wave function with the quantum number Psi N of X and E N for a given
quantum number N.  So let me summarize and then stop for this lecture
namely the particle in the 1D box has two results, A quantization of energy or
discretization due to boundary conditions and of energy E and a probability
statement for determining the position of the particle in the box at various
locations,  okay.   Let's  continue  this  in  the  next  part  and  complete  the
remaining that we needed to do in terms of what are called the measurables



and then how do we interpret this probability and so on for various values,
we will do that in the second part, until then thank you.


