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Welcome back to the lectures on chemistry and introduction to molecular spectroscopy. This 
lecture will have some introduction to the central approximation of molecular spectroscopy 
known as the Born Oppenheimer approximation.

Now this is a very important approximation in all of chemical physics. What you have here is a 
justification that was proposed by Max Born and Robert Oppenheimer a physicist and a chemist. 
In 1927 right after the year when Schrodinger published his equation the famous Schrodinger 
equation and applied this to the solution of hydrogen atom.

Now many of you have studied in the elementary chemistry that molecular energies can be 
approximately expressed as sums of independent contributions such as molecular translational 



motion, rotational motion, the energy due to molecular translational motion, the energy due to 
molecular rotational motion, the energies of molecular vibration and electronic energies.

Where does this approximation come from? That’s essentially what Born Oppenheimer provided 
in the beginning. The overall molecular energy represented by the operator, the total energy 
Hamiltonian which contains the kinetic energy and the potential energy is a very difficult term to 
solve, okay.

Let’s look at what is meant by this approximation therefore, let me write the Schrodinger 
equation time independent, the H sai = E sai that’s in the absence of external fields, and H is of 
course is sum of the kinetic energy and the potential energy, for the first time I’m using the hat 
symbol but it’s not consistent with that, it’s the kinetic energy of all the atoms and the electrons 
and the potential energy between the atoms, the nuclei and the electrons.
(Refer Slide Time: 03:07)

Even a simple molecule like hydrogen molecule has a very large number of terms the kinetic 
energy terms and the potential energy terms and therefore the simplest molecule neutron 
molecule that you can think of is not exactly solvable in quantum mechanics. In spectroscopy of 
course we need to know the energy levels of molecular systems in the absence of the 
electromagnetic radiation or in the absence of the perturbation, the field perturbation therefore it 
is important for us to have even approximately the picture of molecular energies and molecular 
quantum mechanical solutions.

Born Oppenheimer approximation plays a crucial role in separating the molecular Hamiltonian 
problem into two independent nearly independent problems, electronic energy and nuclear 
motion energy, they are nearly independent they are not exactly independent of each other, that’s 
the cracks of whole approximation, the electronic energy essentially leads to what we know 
today as quantum chemistry, the study of electronic energy, potential energy surfaces for fixed 



configurations of nuclear, nuclei, and then the nuclear motion energy which is essentially what 
we call as molecular spectroscopy. And the link between the two will turn out to be electronic 
spectroscopy, we shall see that in this lecture,
(Refer Slide Time: 05:03)

this is a long lecture and I must tell you that I do not know how to simplify this into two half an 
hour or 3:20 minutes or 4:15 minute lectures, it’s an important concept and I would rather take 
the time to explain to you, you can break this lecture at any point of time, and start listening to 
the rest of it from where you left off when you have the time, but I would rather have this as one 
long lecture, because it’s one beautifully important concept which I think everybody should 
understand, reasonably carefully, okay.

So let me write down the molecular wave function sai has say N nuclei and N electrons, some 
arbitrary number, so let’s do this parallelly for hydrogen molecule 2 nu protons and 2 electrons, 
okay, if you have to do this for something like carbon 60, they are 60 carbon nuclei and 360 
electrons each carbon having 6 electrons.

Now each nucleus in a 3 dimensional coordinate system has 3 coordinates and so are the 
electrons, each electron has 3 coordinates therefore in the case of hydrogen molecule you are 
looking at 12 coordinates, and in the case of carbon 16 you are looking at 420 x 3, 1260 
coordinates, 
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so the Schrodinger equation for the hydrogen atom contains 3 coordinates the X, Y, Z and its 
solution using the polar coordinates system which was given to you in a summary form in the 
last lecture, involves a fairly detailed mathematical processes to understand and the solutions are 
very beautiful indeed, but you cannot solve such systems with such larger number of coordinates 
by any other means that approximation procedure, so what is the Born Oppenheimer procedure 
for this? 

First the wave function is a function of all the nuclear coordinates which let me write as the 
capital R’s for the N nuclei and each one is 3 or 1X or 1Y or 1Z if you wish too, or 1Z if you 
wish too and likewise for the others, and let the electrons be r1, r2 small r’s and rn, okay, this is 
the overall molecular wave function, 
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and this wave function is solved for the Hamiltonian which contains the nuclear kinetic energy T 
capital N the electronic kinetic energy, the electron repulsion terms, this is the potential energy 
term, the electron nuclear attraction terms, this is also part of the potential energy and the nuclear
repulsion terms, and I use nonrelative stick form to make things simpler, therefore the kinetic 
energy terms contain –H bar square/2M capital M which is the mass of each nucleus say MI, let 
me write dou square/dou R IX square + dou square/dou R IY square + dou square/dou R IZ 
square, where I is the atom index or the nuclear index, and the X,Y, Z are the coordinates of that, 
and this is summed over all the atoms I = 1 to N all the nuclei.

This is TN, 
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the T electron likewise is given by –H bar square/2ME all the electrons of the same mass 
therefore you write dou square/dou little r say MI, MX let’s write that, M electron, MX square + 
dou square/dou R MY square + dou square/dou R MZ square and you sum over all the electrons 
M = 1 to the little m, this is the potential energy.

And likewise we can write VEE, VEN, VNN, I don’t want to write that in detail because there 
are all going to be multiplying the wave functions therefore they do not have the special 
significance for the Born Oppenheimer approximation that we have with a derivative operators, 
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therefore I have written the derivatives more explicitly and write the others as simply symbolic 
for the hydrogen molecule we can see what they are later, and the approximation one sai which is
a function of all the nuclear coordinates and all the electron coordinates, Born Oppenheimer 
propose this to be a product of two terms one which depends on electronic coordinates and the 
nuclear coordinates, so let’s write that as R1, R2, RN, DN electrons and all the nuclear 
coordinates R1, R2, R capital N times a sai nuclear which is only a function of the nuclear 
coordinates, this is the first of the two steps that Born Oppenheimer provide in order to 
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reasonably separate to the molecular Hamiltonian into two independent, nearly independent 
domains of problems to be solved, okay.

Electronic wave function is a function of all the coordinates, nuclear wave function is a function 
of only the nuclear coordinates, what is that mean? For example, let us take the hydrogen 
chloride molecule very near to each other and also the hydrogen chloride, the so called molecule 
may not be a molecule, it’s maybe two independent atoms, hydrogen and chlorine which are so 
far away from each other that the electron density remains more or less localized to the 
individual atoms, whereas in this case the electron densities seems to have spread out in such a 
way that part of the electron density of the hydrogen atom goes toward chlorine and so on, 
(Refer Slide Time: 13:22)

and you know electro negativity, your principals and you know this bond is partially, it’s partly 
covalent but partly and so on, but the point is to following that the electron density which is the 
square of the electronic wave function is dependent on how far the nuclei are from each other 
and that seems to be a change in the electron density as a nuclei come together, therefore the 
electronic wave function being a function of the nuclear coordinates is a natural thing for a 
chemist to consider because atoms which are far away from each other when they come close to 
each other, there is a possibility of forming a bond, there is a possibility of rearranging probably 
electron, rearrangement of the electron density, therefore the electronic wave function being a 
function of both nuclear and electronic coordinates makes sense.

What about the nuclear wave function, why are they not functions of the electron coordinates? 
The argument that you find often in textbooks is that the mass of the electron is a very, very 
small quantity compared to the mass of the propel, so what 1840 times less, therefore for a given 
kinetic energy, the electrons are much faster moving V square, 
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MB square if you think about it half MB square, V is much larger for the electron than for the 
nuclei in a classical sense, what it means is that the nuclear motion is almost instantly adjusted 
by the electronic positions and therefore the nuclear coordinates, the nuclei do not have to worry 
about the electron density in a sense that the nuclear wave functions or nearly independent of the 
electronic coordinates, the electrons almost instantly readjust themselves to the nuclear position, 
and therefore as a first approximation let us not consider the nuclear wave function also being 
dependent on the electron coordinates, leave that out, nuclei or slow moving, therefore we are 
not too worried about the nuclear motion unless we come to molecular spectroscopy, okay.

And we will not worry about it’s immediate dependents of the electron, the other dependences 
for more crucial for chemical bond and therefore keep the electronic wave function as dependent 
on nuclear and electronic coordinate, I mean in a sense this is, this makes a chemical sense and 
with this approximation Born and Oppenheimer suggest to the separation of the overall 
Hamiltonian as follows, H sai is now let me write them individually TN sai electronic sai nuclear
+ TE sai electronic and sai nuclear + VEE sai electronic sai nuclear + VEN sai electronic times 
sai nuclear + VNN sai nuclear times sai electronic and this is equal to E sai electronic sai nuclear,
okay, now the brackets have some special meaning,
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 there is no bracket here because this is the term we are going to discuss TN sai electronic sai 
nuclear, we’ll see what it needs to be changed too, but the other brackets are quite clear, TE 
contains only derivatives of the electron coordinates, you see that contains only the derivatives of
the electron coordinates that you see here, 
(Refer Slide Time: 17:36)

therefore in the overall wave function if you look at it the electron coordinate dependence 
happens only for the electronic wave function, okay.
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Therefore the derivative operators do not change, the derivative operator does not change the sai 
nuclear, so what it does is it only acts on the sai electronic therefore I have put that in bracket, the
rest is the multiple, this multiplied by sai nuclear and potential energies are even though they are 
operators they multiply the wave functions therefore I have put for the electron, electron 
repulsion, the sai electronic together, the electron nuclear attraction the sai electronic together 
and the nuclei, nuclear with the sai nuclear because it’s possible with this to separate the 
Hamiltonian.

What about the TN sai electronic sai nuclear? The cuts of the approximation is there only, TN 
please remember contains a derivative operator dou square dou RI square X, Y, Z if you wish to, 
therefore when it acts on sai electronic and sai nuclear remember both of these are dependent on 
the nuclear coordinates, so the derivative acts on something like a function U(R) V(R) if you 
want to write this, specifically RI, RI, so dou square/dou RI square, okay.

Now remember that the derivative rule is that if you have a function say D/DX or a function 
dou/dou X U(X, Y) some other variable and V(X, Y), then you know that this derivative is 
expressed as dou U/dou X times V + dou V/dou X times U, and the second derivative dou 
square/dou X square on U(X, Y) V(X, Y) is the derivative dou/dou X acting on this term, the 
sum of these two terms and therefore what you get is dou square U/dou X square times V + dou 
square V/dou X square times U + you will get the cost term also 2 dou U/dou X dou V/dou X, 
therefore with this sort of elementary mathematics in mind, it’s easy to see that to the nuclear 
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kinetic energy operator acting on the sai electronic and the sai nuclear will have 1, the TN 
operating on sai electronic and the other TN operating on sai nuclear, okay, now this contains 
dou/dou RI sai electronic, the electronic coordinates and the nuclear coordinates RN. It also 
contains a second derivative dou square/dou RI square of sai electronic, okay. 

Born Oppenheimer suggest this to be an adiabatic change, and adiabatic term in physics and in 
thermal dynamics and in chemistry adiabatic means slow passage or change that happens slowly,
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change that is slow, so what is the slow here? The slow is that we refer to here is that the 
electronic wave function that you see here is actually a function of the nuclear coordinates, but 
the derivative of the electronic coordinates this whole thing is sufficiently small, 
(Refer Slide Time: 22:20)

the change of the sai electronic with respect to the nuclear coordinate that rate of changes 
sufficiently small, that’s a reason why it’s called adiabatic, it’s sufficiently small that we can 
throw away, we can neglect to that, we can also, if that change a small the rate of rate of change 
is also going to be small or even, smaller and therefore let us not consider these two terms as 
important, this was the suggestion which today is known as the Born Oppenheimer 
approximation that the rate of change of the electronic wave function with respect to the nuclear 
coordinates and the rate of rate of change of the electronic wave function with respect to the 
nuclear coordinate terms be neglected, not equal to 0 be neglected, please understand if the 
derivative is 0 then that function is independent of the coordinate, but we have assume that the 
wave function to be dependent on the nuclear coordinates because we argued that the electron 
densities keep changing when the nuclei come together.

Therefore the wave function is dependent on the nuclear coordinates, the electronic wave 
function is, but it’s rate of change and the rate of rate of change with respect to nuclear 
coordinates be dropped off and that’s approximation 2, throw away dou/dou RI sai electronic and
dou square/dou RI square sai electronic. What is this dou, does this something beautiful, 
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let’s see what that is? Therefore when you write TN sai electronic sai nuclear essentially what 
you have done is to write this as TN sai nuclear because you have dropped off the dependence of 
the electronic coordinates, so this is the only thing, now you go back and see why this brackets 
are where there are, okay.

Therefore let me write to this term,
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 here itself as TN sai nuclear sai electronic, it’s an approximation, therefore I would not write this
as E sai, but rather I would write this as proximate E sai, so what you have here is therefore this 
term goes away and it’s replaced by this term TN sai nuclear and then you have T sai electronic 
VEE sai electronic, 
(Refer Slide Time: 25:23)

VEN sai electronic, remember all these things depend on the electronic coordinates, okay.

This is solved as the electronic Schrodinger equation TE sai electronic + VEE sai electronic + 
VEN sai electronic, let us call this as a Hamiltonian for the electronic motion acting on sai 
electronic, this is called the electronic Hamiltonian. Defined for very specific positions of the 
nuclear coordinates, defined for specific choice of nuclear coordinates, okay, keep this in mind.

Now let me take you off to your slightly different discussion, 
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the particular the one dimensional box when you solved to this equation H bar square/2M D 
square/DX square sai(X), when you solve that you got the energy which is independent of X, it’s 
a constant, okay, and this was H square/8ML square N square, no X here, when you solve the 
harmonic oscillator problem H bar square/2M D square/DX square sai(X) + 1/2 KX square 
sai(X) = E sai(X) this is a constant, and so for the hydrogen atom, the energy is simply –
HCRH/N square, there is no X dependence or R dependence or theta dependence or phi 
dependence in it, okay, simply a function of N square.

What you did was essentially you integrated over the coordinates which are the ones with respect
to which you have written the derivatives integrated with respect to X. And therefore the energy 
is independent of X.
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Now with this let’s go back and look at this one, when you solve the Schrodinger equation for 
the electronic Hamiltonian as written here, 
(Refer Slide Time: 28:20)

the solution of this if it is to be written as EE sai electronic, if that’s Schrodinger equation for the 
electronic motion, the EE is a constant with respect to all the electron coordinates of this 
Hamiltonian, all of them, however the EE is a function of the nuclear coordinates because in the 
process of solving in your own touch the nuclear coordinates you leave they are as they are, you 
solve those problem for each set of nuclear coordinates and when you solve you will get many 



many energies like the particular in the box, or like the harmonic oscillator or like the hydrogen 
atom you get a whole lot of energies, and you get a whole lot of wave functions, all of which are 
for one configuration of the nuclear coordinates N, because that VEN depends on both the 
electron coordinates as well as the nuclear position coordinates, therefore you don’t change the 
nuclear coordinates, keep them to a fixed value, clamp them and that is called clamped nuclei 
approximation, solving HE sai E for one set of RI gives you EE which is a function of that RI 
times sai E.

Change to another set of RI, you will get again another solution sai E prime which will give you 
EE prime, some other value RI, this is a different set of coordinates and sai E prime, 
(Refer Slide Time: 30:17)

therefore what you do is that you solve the electronic equation for each and every possible set of 
coordinates of all the nuclei, and in that process you generate electronic energies EE which are 
functions of the position of the nuclei. What does this do? This goes back to the left over part in 
the equation that we have here.

So what we have done is to consider TE sai electronic which is part of the electronic 
Hamiltonian, VE sai electronic which is also part of the potential energy and then VEN sai 
electronic and call all these things together by HE sai electronic. 
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And what does it give? It gives you EE a function of the nuclear positions R1, R2, RN times sai 
electronic, therefore we substitute that and then solve the rest of the problem, rest of the problem 
contains the nuclear. Let’s use a different color, yeah the rest of the problem contains the nuclear 
kinetic energy, the nuclear repulsion energy and of course when you solve this or when you 
substitute this by HE you have to put this back into that equation therefore all the things which
(Refer Slide Time: 32:03)

 are in green are known as the nuclear Schrodinger equation and that’s what you solve in 
molecular spectroscopy and what you get in the nuclear equation, not just the nuclear, kinetic 



energy, not just the nuclear, nuclear repulsion and energy, but an energy term which comes from 
the electronic Schrodinger equation which is a function of the nuclear positions and of course 
that’s called the electronic potential energy surface, this term, potential energy surface. 

Electronic potential energy surface, therefore the nuclear motion is studied in a surface provided 
by the electronic Schrodinger equation and this is with the approximation that the nuclear kinetic
energy operated does not change the electronic wave function drastically, therefore the D/DRI, 
the derivative of the electronic wave function with respect to nuclear coordinates they’re all not 
there, if they are there this simplification will not happen, and such a case when they are there is 
actually called the adiabatic process and it’s called the non-Born Oppenheimer or its also known 
as the failure or the breakdown of the Born Oppenheimer approximation, that’s done in the 
slightly more advanced course of chemical physics, anyhow let’s not do that here, for our 
purposes we will stick to the simple Born Oppenheimer approximation, the adiabatic potential 
energy surface, this is called adiabatic electronic potential energy surface, okay. 
(Refer Slide Time: 33:53)

Which provides the potential energy surface for the nuclei to dance for the nuclei to move around
and therefore the nuclear motion Hamiltonian which is largely considered to be the motion of the
nuclei being translational motion of the whole molecule, electrons are very light, therefore you 
can replace that much of the motion, the masses due to the nuclei, translation motion of the 
nuclei, the rotational motion of the atoms and the vibrational motion of the relative 
displacements of the nuclei between with respect to each other, all these things are called nuclear
motion Hamiltonian, and the nuclear motion Hamiltonian is the fundamental the Hamiltonian 
that we study in spectroscopy with the understanding that all of this happens due to the potential 
energy surface that was generated by the solution of the electronic equation, so that’s the 
quantum chemistry problem and this is the molecular spectroscopy problem, obviously the 
electron provides the link here and therefore when you see electronic spectroscopy these two 
things really get together and that’s much more complicated.



So let me summarize this part of the lecture namely the Born Oppenheimer approximation 1 is 
sai total is expressed as, the sai total is expressed as sai electronic sai nuclear and then the H on 
sai electronic sai nuclear is expressed as H electronic sai electronic times sai nuclear + the T 
nuclear sai nuclear times sai electronic + VNN sai nuclear sai electronic and that’s equal to E sai 
nuclear sai electronic. And what we shall do is obviously replace this by EE which is a function 
of the nuclear coordinates, all of them sai electronic.
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So now with this form you see that the sai electronic is a multiple to the entire function so you 
can get rid of that, you can get rid of that, that, and what you get is of course the nuclear 
Hamiltonian TN sai nuclear + VNN sai nuclear + EE sai nuclear is equal to the total energy E 
times sai nuclear, okay, this is spectroscopy, 
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this is quantum chemistry, quantum chemistry solution of the electronic equation for fixed 
configurations of the nuclei and of course you can keep changing them and then put that 
potential energy, okay.

So in a simple case like a hydrogen molecule what does this do? So case of hydrogen molecule 
we don’t need to worry about all the 6 coordinates of the two nuclei, but let’s just concern 
ourselves with the inter nuclear distance between the two hydrogen atoms, therefore when you 
solve for the EE you get many energies for a given value of the inter nuclear separation R12 
which is R1 - R2 vector, okay.

For one value you get many energies, you get EE, ground state, then you get the EE the higher 
energy states like the Schrodinger equation for the electron you get many many energies. 

And then of course change R12 to the next value R12 + a delta R, solve this again you will get 
EE prime, R12 + delta R, okay, again a whole set of energies EE0, EE prime, some other value 
EE1 and so on, 
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therefore for the hydrogen molecule you actually get a whole series of energies for each and 
every value of the inter nuclear distance and that’s shown in this animation, okay, that’s shown in
this animation. 

So what I have here is the inter nuclear distance R12 is along the X axis and then the electronic 
energy solution that you get, multiple solutions that you get for solving the electronic equation, 
so for that R12 you get different values, like you get in the case of hydrogen atom you get the N 
= 1, N = 2, N = 3, there the quantum numbers are well known, here some quantum numbers 
come out, fine, but the point is you get multiple energies, then you slightly change the R, you get 
another set of energy Eigenvalues, continue this process, you get many many such things and of 
course you can draw using these points which are created from the solutions of the hydrogen, of 
the hydrogen molecule here, of course what you can do is I have colored them to show that the 
lowest energy solution for each value of the nuclear configuration is all in blue that’s connected 
to give you what is called the ground state potential energy surface, then next higher,
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 the next higher energy, the second energy for each and every such configuration that you get 
which I have connected using a red line is called the first excited electronic state energy and then
you have the second excited state electronic energy, the third excited state electronic energy and 
so on, okay, 
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therefore you see how the electronic energy surfaces which you are normally drawn in your 
elementary spectroscopy classes, how they come from a deeper understanding of the molecular 
Hamiltonian and the approximations provided by which we are able to reproduce these electronic
energy states, thus this is the essence of Born Oppenheimer approximation, and I would want 



you to go back and think about the same thing using some other molecular system instead of 
hydrogen molecule if you have a slightly more complex, complex molecule even a triatomic 
molecule you will see that the coordinates, the nuclear coordinates for a triatomic molecule there 
are 9 coordinates.

Taking the translational motion away from this picture which takes three coordinates out of them 
and taking the rotational motion also away from them you have three vibrational what are called 
coordinates, nuclear, inter nuclear coordinates and the potential energy for the electron is a 
function of these three nuclear coordinates, therefore the potential energy is not a graph, it’s a 
function of 3 variables therefore it’s a surface, it’s actually a 3 dimensional surface, 4 
dimensional surface because you need 3 coordinates to represent and the fourth dimension is the 
actual point, therefore even a triatomic molecule you need a 4 dimensional system to actually 
plot, people use color as the fourth dimension to indicate such potential energy surfaces, but if 
you have a N atom molecule in general there are 3N – 6 such vibrational coordinates for a 
nonlinear molecule, what are called independent coordinates leaving the translation and rotation 
out 3 3 each, you have 3N – 6 independent coordinates and these are called the normal 
coordinates, and these normal coordinates determine the electronic energy surface, the electronic 
energy surfaces 3N -5 dimensional, because 3N – 6 coordinates and to the dimension for plotting
that, so it’s impossible to plot potential energy surfaces in for any real molecule in a visual form 
and what you do is to use what are called the constant energy surfaces or constant coordinate 
surfaces you do them, this contour maps are used and there is a lot of information which has 
been generated over the last 70 years or many small molecular systems on these potential energy 
surfaces, ground state, the excited state and the higher energy excited state and so on.

Therefore that’s a whole field of quantum chemistry which provides such surfaces for us to 
understand molecular motion through spectroscopic means, in that sense Born Oppenheimer 
approximation separates nuclear to electronic.

In the next part to this another 15, 20 minutes, in the next lecture I’ll tell you how such a model, 
when it is applied to rotations and vibrations, it also gives you another separation at a lower level
to give you what is called the microwave spectroscopy and then what is known as the infrared 
spectroscopy and then the coupling between these microwave and infrared spectroscopy as a 
rotational vibrational spectroscopy and so on, therefore applying this Born Oppenheimer 
approximation in the sequential is possible for us to express the Hamiltonian as approximates 
also, but the procedure is approximate. Thank you.
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