
Prof. Mangal Sunder Krishnan: Welcome back to the last part of this 
elementary lecture on harmonic oscillator. In this part, let me do a simple 
calculation and demonstrate how to do elementary integrals for 
spectroscopy in the future, I mean in the next set of lectures when I talk 
about molecular vibrational spectroscopy, and then be worry the intensity of 
the vibrational lanes, what goes in there. The mathematical element will be 
discussed here.



So this part is on the average values for position and momentum operators 
in quantum mechanics for the harmonic oscillator. In fact, it’s extremely 
simple. If I have to use the wave functions as given here, I don't think this 
lecture should be there in the first place, because the average value for the 
position and the momentum for the harmonic oscillator centered at x=0 is 
actually 0. Therefore, what are we talking about, okay. We do talk about the 
average value for the energy partition, if we discuss that.

See harmonic oscillator Hamiltonian has two non-trivial parts, the kinetic 
energy as well as the potential energy part. The kinetic energy is given by 
the momentum squared operator divided by twice the mass of the oscillator 
and the potential energy is given in terms of the harmonic oscillator force 
constant ½ kx2. Therefore, some integral calculations involving the Hermite 
polynomials and the Gaussian functions can become unwieldy as we say 
when the higher order functions are involved, and there are better ways of 
handling harmonic oscillator using what is known as the operator 
representation, or it's also called occupation number representation by some
physicists and the others call it as the harmonic oscillator, raising and 
lowering operators.

So there are many different ways by which we can study them. However, 
let's stay with the statement that the position and momentum, the average 
values are 0. How do we show that? It's very easy. I told you that if we have 
an integral of an r function, f(x) = -f(-x), then this is 0.



Now remember wave functions for the -- harmonic oscillators are given in 
terms of say, let's take, ψ0(x), ψ0(x) is given borrowing a normalization 
constant, which I will write as N0 is actually α/π 21/4, but it doesn't matter, N₀
e-αx2/2. So if we have to calculate the average value for the position of the 
harmonic oscillator, it's quite obvious. Since the probabilities of finding the 
oscillator on the +x side for any given x is the same as the probability for 
finding the oscillator for the -x at that x. The probabilities are evenly 
distributed. You can easily see that the positions with the value of a -x on the
negative side and the +x on the positive side, multiplied by identical 
probabilities cancel out, okay.

Therefore, if you were to do this, the integral is integral is x, N₀2, e-αx2, 
because it’s a square of the wave function from -∞ to ∞, and you know times 
dx and you know xe-αx2 is an odd function. Therefore, this integral is 0.



This is true for any wave function. This is at ψ0, the expectation value is 
calculated. Please remember the expectation value of any operator in the 
<x> ψ is given by ψ*A acting on ψdτ / ∫ ψ*ψdτ. So since this is a normalized 
wave function, for us, this is equal to 1, and here we have put in a as the 
position operator which is the x itself and the dτ and the limits are from -∞ to
∞ dx, okay. So this is what we had done. Therefore, if you calculate this for 
any <x>ψn, please remember that it's going to involve this integral, namely 
Nn

2, the normalization constant, -∞ to ∞ ∫ x e-αx2, but now it will involve the 
Hermite polynomial, Hn(√αx) Hn(√αx) dx, okay.

Therefore, you see that if the Hermite polynomial is odd for any given odd n, 
then the two odd functions multiplied together gives you an even function, 
and therefore, you see exponential is already an even function, the product 
of the two Hermite polynomial is an even function, because they have the 
same Hermite polynomials of order n and x is odd, and therefore, this is an 
integral of an odd function, between symmetric limits, -∞ to ∞ ∫ odd function 
of (x) ds and therefore this is 0.

Therefore, the average value for the position of the harmonic oscillator 
independent of what state the harmonic oscillator is in is always, okay, is 
always the midpoint, the point where the harmonic oscillator is at equilibrium
and the potential energy is 0 at that point.



Now if the harmonic oscillator for example is not centered at x, but we have 
a slightly different coordinate system, such that we represent the harmonic 
oscillator by, say, ψ(y), let us do that, as e-(y-y₀)2/2, where y₀ is the center, 
because you see this function will have a maximum at y=y₀, and therefore, 
this is a Gaussian shifted from y=0 to a Gaussian shifted at y=y₀, okay. So if 
you have it at 0, this is now the Gaussian shifted at y0, and this point is the 
midpoint, which is y=y0. Therefore, if you calculate what is the average value
for this function for the position, namely what is the average y, if you do 
that, you can easily show that ∫ y e-(y-y₀)2 dy between the limits -∞ to ∞, and 
with the normalization constant N2, some normalization constant square. You 
can show that this will give you y₀, which is the value at which the function is
on the average as 0 potential energy and it’s the midpoint.



What about the moment? Please remember the momentum operator is -iħ 
d/dx. It should be obvious that the derivative operator is something like an 
odd character, because it changes an even function, d/dx of an even function
will immediately become an odd function, or d/dx of an odd function will 
become an even function. For example, if you do the derivative d/dx x an 
odd function, because it change sign, is going to be one which is even, 
independent of the sign of x, in this case of course, independent of x as well. 
But what about d/dx of x2? It gives you to 2x. This is even; this is odd. In a 
sense, you can see this because the derivative has the odd character.



Therefore, you can see immediately that when we talk about the average 
values for the momentum at any given wave function ψn, if we have to 
calculate the average value of the harmonic oscillator in the state for the 
momentum operator, then the integral is Nn

2, the normalization constant 
between -∞ to ∞.

Please remember now momentum being a derivative operator (-iħ d/dx), 
okay. You need to put the wave function * here and the wave function itself. 
This is a real function. Therefore, you have e-αx2/2 Hn(√αx) that’s the ψn* on the
site. This is the operator, P, and acting on the wave function e-αx2/2 Hn(√αx) 
dx. Now please remember this is odd or even depending on whether n is odd 
or even, okay. Therefore, if you take the derivative of an odd function, you 
will get an even function, but please remember if Hn is even, then the 
derivative of Hn will give you an odd function. Therefore, the product of the 
two is odd, okay. If Hn is odd, the derivative of the same Hn here, which is the 
odd function, will give you an even function, and therefore, the product is 
again odd. Therefore, the integral for any state ψn of the average value for 
the momentum is also 0, okay.

So I mean it looks like it's a trivial result, but again it's very easy to imagine 
that if the harmonic oscillator has forward momentum in this direction and if 
it has a backward momentum in this direction, because momentum is a 
vector, and therefore, you can always say forward in one direction means 
backward in the other direction. Since the probabilities for the value, the 
absolute value, of the momentum for any given x, the probability density is 
the same for whether it is +x or -x. The averages add with the vectorial sign 



of P. In the +x direction, the probability remains the same, but the value of 
the momentum is positive; in the negative x direction, the probability density
is the same for that value of x but the momentum is negative, because it has
a negative sign, and therefore, the momenta cancel each other for every 
such value of x and -x, x and -x. Therefore, the integral should be visualized 
as going to 0, because it has the art character.

The last important point for the harmonic oscillator has something to do with 
the average values for the kinetic energy and the potential energy, which I 
would want you to calculate, but they are not 0. Average values for kinetic 
energy of the harmonic oscillator and the potential energy of the harmonic 
oscillator, okay. So the kinetic energy term is given by -ħ2/2m d2/dx2. This is 
the operator for the kinetic energy, okay. The potential energy operator is of 
course ½ kx2, x being the operator.

So when you talk about the average value of kinetic energy at ψn, you 
discuss this quantity, namely Nn

2 -∞ to ∞ ∫ e-αx2/2 Hn(√αx), this is the ψn with 
the normalization constant N, and then you have the operator, which is 
-ħ2/2m d2/dx2, again acting on the wave function, e-αx2/2 Hn(√αx) dx. This 
integral is not 0, because if Hn is odd, Hn is odd, and therefore, odd times 
odd function. This is a second derivative. The second derivative does not 
change the oddness or the evenness of the function if it has that character. 
An odd function remains an odd function; an even friction remains an even 
function. Therefore, the kinetic energy, the average value of the kinetic 
energy for the harmonic oscillator -- after all it's a square the momentum. It 
doesn't depend on the direction of the momentum. Therefore, for +x and for 



-x, they keep adding the momentum for each value of the position. So this is 
not 0. Please calculate this, and I would suggest that you do this for n=0 or 
this will be part of one of the quizzes that you will find.

And in a similar way, the potential energy, the average value for ψn is given 
by again from -∞ to ∞, but since it is x2, you can write ∫ ½ kx2 and Nn

2, x does
not change except to multiply, then you can write the wave function ψn

2(x) 
dx, and again, this is not equal to 0.

For the ground state, the harmonic oscillator average value for the kinetic 
energy for ψ0 is equal to the average value for the potential energy ψ0 and 
that's equal to ħω/4. And please remember the E0 is ħω/2. Therefore, the 
average values for the kinetic energy and the potential energy are exactly 
distributed as equal contribution to the total energy, but a similar expression 
can be calculated for various values of the wave functions and the various 
service of the kinetic energy, and those exercises I believe as exercises for 
you to work out in detail.

The harmonic oscillator is an extremely important problem as far as the 
chemists are concerned, in the sense that if you want to study the vibrational
spectroscopy, if you want to study vibrational Raman spectroscopy, infrared 
or Raman spectroscopy, and if you want to study electronic spectroscopy 
with the vibrational coordinate changes and so on, these are all there in the 
spectroscopy applications in chemistry. The harmonic oscillator model is 
crucial. And the fact that the average value of the position goes to zero has 
something to do with the transition probability connecting two different 



harmonic oscillator levels. We will see more of that when it comes to the 
study of molecular spectroscopy, and then we study the infrared 
spectroscopy.

Until then this is a sort of a very elementary summary for the solutions of the
harmonic oscillator and how they behave and what can be learned from 
them and this can be used to build the next level of study of harmonic 
oscillator using raising and lowering operator form. And so that will form part
of a much more advanced course later that I will be offering. Until then, 
thank you very much.


