
Prof. Mangal Sunder Krishnan: Welcome back to the lectures in chemistry, 
and this is the continuation of the quantum mechanics and the elementary 
atomic structure course and this particular lecture continues from where we 
left off in the harmonic oscillator.



In the last lecture that we recall what we did. I mentioned that the wave 
functions and the harmonic oscillator Hamiltonian. However, I did not solve 
the Schrodinger equation but gave you the final solution, which you might 
recall here in the last line, namely the wave functions ψn(x) where n is the 
quantum number and takes values from 0 all the way up to ∞ assuming that 
the harmonic oscillator motion continues to be like a harmonic oscillator for 
very large amplitudes as well.

The wave functions ψn(x), it consists of two parts an exponential e-αx2/2 where 
α is the parameter set for the harmonic oscillator, α is defined here as the 
force constant times the mass of the harmonic oscillator divided by the 
square of the Planck's constant and this whole thing is a square √, and α has 
the dimensions of 1 over the length squared, therefore if x represents the 
displacement, then αx2 is dimensionless. And then the other part of the 
harmonic oscillator wave function is the solution to the Hermite’s differential 
equation, which is given in terms of the Hermite polynomials Hn, again, of 
√αx so that the polynomial has quantities, which are dimensionless, and the 
quantum number n is of course 0, 1, ,2 3, et cetera.

So this wave function was not derived for you, but the solutions were given 
to you as solutions derived from the differential equation as well as the 
requirement that the harmonic oscillator wave function for very large values 
of the displacement of the oscillator from equilibrium, the wave function 
goes to 0, so that asymptotically the wave function dies off and that's 
important in terms of making certain that the wave function is a normalizable
wave function. And now if you go back and look at these formulae what you 
have here is the Hermite polynomials and you might recall that the Hermite 
polynomial for the first quantum number H0(√αx) = 1, it's independent of the
displacement.



H1, if you recall, I used to write y and I said it was 2y, therefore, H1(√αx) = 
2√α x, and α is specific to the harmonic oscillator that we have interest in. 
Therefore, if the oscillator is a very rigid oscillator, that is it has the force 
constant which is very high or if the oscillator is very heavy, like its mass is 
very large, then you see α is also very large, and that's very important 
because if you see if alpha is very large that has something to do with the 
exponential e-αx2 that I have here. Let me just -- yeah. It has a bearing on this 
term because the exponential will become very narrow, and therefore, the 
properties of the harmonic oscillator are reflected in the wave function, 
which builds them through the exponential as well as through the Hermite 
polynomial.



What is the second Hermite polynomial? H2(√αx), you remember that was 
4y2-2, therefore, it becomes 4αx2-2, and likewise for the third, H3(√αx), if you 
recall, it is (8y3-12y) H3y, and therefore, that becomes -- when you put y = 
√αx, it becomes 8α√αx3-12√α x, and likewise for H4, H5 and so on, okay. And 
if you recall, there was a table of the harmonic oscillator functions, which 
was given to you and you might recall that the wave functions have a 
specific parity, that is if you look at the wave function ψn(x) and ψn(-x), if you 
consider the wave function ψn(x) and ψn(-x) since you know that x can take 
values from -∞ to ∞ that is on either side of the oscillator’s equilibrium 
position, then ψn(x) and ψn(-x) have this property, namely ψn is an odd 
function if n is odd. If ψn(x) is an even function if n is even,  okay.

This is quite obviously dependent on the properties of the Hermite 
polynomial that you see here, because you see the exponential of -αx2 is 
always even, whether it is x or -x since you have the square of x here, this 
function is independent of the sign of x. However, this function obviously 
depends on the sign of x as you can see it in some of the examples here, 
namely H0(x) is independent of x, therefore, it's independent of the sign of x. 
H1(x) is x, therefore, H1(√αx) is an odd function if x is negative, because the 
function is also negative. What is the relation between odd and even 
functions? You might kindly recall, that a function is odd if or if it has this 
property, namely ψ(x) is a negative of ψ(-x), therefore, if the argument is 
negative, then the function changes sign, okay.



This is odd. A function is even obviously when this does not happen even if 
ψ(x) = ψ(-x), and with this definition in mind, you will immediately see that 
the odd numbered Hermite polynomials, namely H1, H3 and if you recall H5, it 
contained x5, x3 and an x, nothing else. Therefore, the odd numbered, odd 
indexed Hermite polynomials or all odd functions and likewise, the even 
quantum number indexed Hermite polynomials like H0, H2, H4, H6 et cetera 
are all even. Therefore, this property is very important in terms of 
determining the average values and the momentum et cetera since integrals
have some very specific properties with respect to odd and even function

Remember if you are integrating a function between symmetric limits ∫ -a to 
a and f(x) dx, you can say something about it if f(x) is odd. The answer is this
integral will be 0. If f(x) is even, you can't say immediately what the answer 
is, but you can write the following, namely the ∫ -a to a f(x) dx for an even 
function is 2 ∫ 0 to a f(x) dx. So these are properties, which are extremely 
important and you can see that if the integral is our integrand is or between 
symmetric limit, that integral is 0. These are mathematical requirements, 
which are very useful later on when you study more mathematics and more 
quantum mechanics and other problems in physical chemistry, okay.



Now what do we have with respect to these functions? Let's get to the 
possibility of visualizing these functions and visualizing the -- visualizing this 
and visualizing the squares, okay. I have some pictures here. Yeah this table 
is extremely important. You might recall that this was probably shown in the 
last lecture. You can see that H0, H2, H4, H6, H8 all have even powers of x and 
H1, H3, H5, H7 all have odd powers of x, and therefore, the odd Hermite 
polynomials are odd functions and the even Hermite polynomials are even 
functions of x.



Now how does the wave function look? Okay, you recall the energy levels, 
the energy levels if you remember have this expression, namely En = ħω 
(n+½) where n = 0, 1, 2, 3 et cetera.  Therefore, you can see that E0 = ħω/2,
E1 = 3/2 ħω, and E2 = 5/2 ħω and so on. So what does that tell you?



That gives you the picture that the energy levels are equidistant and the gap
between any two successive energy levels is exactly ħω. So this is the ½ ħω,
this is the 3/2 ħω, this is all in ½ ħω kind of units. So don't worry about these
numbers, 2, 4, 6 et cetera. So the base level is ħω/2, 3/2, 5/2, 7/2, 9/2, and 
so harmonic oscillator is equidistant and it has an interesting consequence in
the spectrum of a harmonic oscillator. In fact, the spectrum of a pure 
harmonic oscillator contains exactly one line, namely the transition between 
any pair of nearby energy levels and nothing more than that.

In order to excite energy transitions between say the level 0 to the level 1 or 
level 2 or level three, you need to have the harmonic oscillator behave as an 
anharmonic oscillator. These things will become clearer when we talk about 
the spectroscopy part of it. But now, having looked at the energy a little bit, 
let us see what the wave functions are, okay.

Ψ0(√αx) = 1 x e-αx2/2 x N0 (normalization constant). Let's not worry about that, 
we will only concern ourselves with this, and this when you plot it as a 
function of -x, and this is -x and this is x. if you do that, this is an even 
function and this is the familiar bell shaped curve, which is the Gaussian 
function, centered at 0, at x=0 and this height is obviously N0, okay. That's 
the value, because the exponential goes to 1, then x is 0, but for larger 
values of x, the exponential function decreases, the Gaussian function 
decreases in value, and therefore, the system bell shaped curve you have 
here.



And in a sense, that's what you see in this picture. That's the bell -shaped 
Gaussian function that you see here and I have put in the parabola, the ½ 
kx2, which is the potential energy parabola to sort of indicate something in 
the next few minutes. Let's look at the next function namely H1(√αx), okay.



H1(√αx) = N1 (normalization constant) 2√αx, if you remember, this is the H1 e-

αx2/2. So if we have to look at it simply, we will plot it as y e-y2/2, if you want the
picture, this is the same as the picture that you have where I have put in y = 
√αx.

What does the graph look like? so if you plot this graph, +y and -y if you do 
that, then since it is y e-y2/2, this is 0 at y=0. Therefore, the function is like this
and this is also -- please remember from H1(√αx), because y = √αx. 
Therefore, you see that this is an odd function depending on the value of y 
abilities, plus or minus, the function will have plus or minus value. As y 
increases from 0, the plot sort of goes up with the e-y2 very small until it 
reaches a point that e-y2/2 starts dominating the function and then this whole 
thing goes back to 0. And since it is an odd function, for -y, it’s exactly the 
same except that it is on negative side. So it's not exactly symmetric.



But if you look at this picture, you see that the function is 0 in the middle 
where y is 0, increases and decreases. Therefore, this is the odd function. 
These are wave functions, and likewise, the next function, which is 4y2-2 x e-

y2/2 gives you this shape, namely it is negative in the middle.



And then there are two points where the function goes to 0, and those two 
points are essentially the points where the function for y2-2, H2(y)e-y2/2 = (4y2-
2) e-y2/2. The exponential never goes to 0 except when y is very infinitely 
large, positive or negative. Therefore, this goes to 0 at values y = ±1/√2. 
There are two values. And remember y = √αx, therefore, x = ± 1/√2α.

So there are two points at which the function goes to 0. So to plot that here, 
you have -- this is the negative side for the initial value and then you have 
the positive side, which goes back to 0, and also this even function where it 
goes back to 0 and you can see these are the two nodes of the function, 
ψ2(x), and for any wave function that the quantum number ψn(x), which is the
harmonic oscillator eigenfunction, there are n nodes at which the ψn(x) goes 
to 0. There are n points, but the n is finite, therefore, the number of nodes is 
finite. The nodes are not a serious problem. What is important is around the 
nodes, when you worry about the probabilities, which is the square of the 
wave function, what you do is that you see that the negative parts are all 
canceled out, everything is positive, but near the nodes, the probabilities will
be very small.



So now let us look at that part in this rough. Let's take the square of the 
wave function and when you plot the square of the wave function this is what
you get, namely the first one is simply e-y2 and therefore it has the same 
shape, except that it's narrower than the wave function, but what is 
important is that the probability of finding the harmonic oscillator outside of 
the classical potential region that you have here, okay, that's non-0. This 
happens only with harmonic oscillator and for any other system in which the 
potential is finite in any given region.

Remember the particle in a one-dimensional box that we looked at, we 
ensured that the particle stays inside the boundary by making certain that 
the wave, the potential energy is infinitely positive and repulsive at the 
boundaries, which meant that there was no leaking of this probabilities of the
system outside of the forbidden -- outside of the allowed region.

So the harmonic oscillator if you look at that, there is this part which is non-0
outside the classical potential energy region. The classical potential energy 
region is only an indicator to tell you that if the harmonic oscillator were to 
obey classical mechanics, then it's impossible for the harmonic oscillator to 
be found outside of these two turning points. These are the turning points or 
essentially that point where the harmonic oscillator turns in the other 
direction, okay. That means that's the point where its kinetic energy is 0, its 
potential energy is maximum, and that's equal to the total energy of the 
harmonic oscillator. This is classical system.



Therefore, for a classical harmonic oscillator, there is nothing called finding 
the harmonic oscillator outside of the potential barrier. Unfortunately, in 
quantum mechanics, the whole this is more difficult to imagine, but that's 
what happens that the square of the wave function being non-0, except at 
finite number of points here, these are the nodes that you see here, okay. So 
the nodes here, for example, this is with the quantum number 2 and this is 
with the quantum number 3. This is with the quantum number 4 and so on, 
you see the number of nodes. Around the nodes, the probability of finding 
the harmonic oscillator is small, but never 0, because we never talk about 
the probability of finding the harmonic oscillator at a given point when the 
variable for the harmonic oscillator motion is continuous, it's always a small 
interval that you have to variable and in no finite interval how small that 
maybe, the harmonic oscillator probability is ever 0.

Therefore, you see that the probably of finding the harmonic oscillator is 
always finite in all regions, however, something more subtle. The second 
subtle point -- the first point is the probability of finding the oscillator outside
the forbidden -- I mean outside and in the forbidden region, region which is 
classically not allowed. That probability is finite, it's never 0. This is called 
tunneling. This is a phenomena, which is introduced for the first time. When 
you have finite potential barriers, one-dimensional barriers, the phenomenon
of tunneling is something that we find, namely it’s a region in which the 
system probably will have in a classical sense negative kinetic energy, but 
that's difficult to visualize. It's possible for the system to be found in regions 
which are classically forbidden. That's a quantum mechanical statement, 
okay.

Now the second important point is that if you take this wave function, which 
is the ground state harmonic oscillator wave function with the quantum 
number n=0, you see that the probability of finding the harmonic oscillator is
very large in the middle, that is very near the equilibrium versus the 
probability of finding the oscillator at the edges where it is extremely small 
now visualize this from the classical mechanical sense, the harmonic 
oscillator is very fast when it moves away from the equilibrium, because it’s 
kinetic energy is maximum and at equilibrium the potential energy is 0, but 
as it goes towards the extreme, it slows down and it virtually stops there for 
a moment and then comes back to equilibrium and then goes to the other 
direction, but the time it spends on either edges that is on either side of the 
potential barrier is definitely much, much more than the time it spends in the
middle that is right where the potential is 0.

Therefore, classically, one would expect the harmonic oscillator to just swift 
past the equilibrium point in no time, its kinetic energy is maximum, but for 
the probability of locating the harmonic oscillator at the center classical 
mechanical mechanics tells you, it’s very small, and the probability of 
locating the harmonic oscillator at the edges is quite large if one way to 



picture the harmonic oscillator. The quantum mechanics at the low energy 
level gives you the exact opposite of what one would expect, therefore, it's 
not intuitive, okay. You cannot explain these things except that such things if 
they can be measured experimentally, can verify our conclusions. It has been
done. Of course, that's a separate lecture, spectroscopy tells you all the 
time, okay.

Therefore, you see that the probability of finding the oscillator for its ground 
state is very large in the middle, but surprisingly, you go to the next energy, 
you see that the probability of finding the harmonic oscillator in the middle is
virtually 0. I mean it's almost 0, it's very, very small. It looks like it is 
something close to the classical mechanics. That's not true, because then 
you see in the middle again it has all these function. So there is this weird 
behavior of harmonic oscillator with respect to classical expectations 
continues until you reach very, very large quantum numbers, okay.

Now if you reach very large quantum numbers, what does it do? If you try to 
plot the wave function for very large, if the barrier is something like that, 
okay, and you plot the wave function, you will see that the wave function 
square is something like that, and if you plot it for -- this is for say 1, 2, 3, 4, 
5, 6 nodes that you have. So this is ψ6(y), okay.



So if you were to plot this for, say, ψ20000, okay, which I cannot do here, but let
me remove this graph and tell you what it looks like. It will look exactly like 
the maximum probability here, and then, I cannot draw those squiggles, so 
let me just connect to the height of the squiggle, harmonic oscillator will look
exactly like that, okay. Imagine there are 20,000 squiggles here, okay, but 
the probability is very large at the extreme and it's also very large at the 
extreme and then the squiggles are such that, you can actually plot an 
amplitude, the height connecting to that.

It almost simulates the potential energy graph, and therefore, the behavior 
of the harmonic oscillator that it spends most of its time towards the edges 
and much less, almost no time in the middle, which is what you would 
expect. Classically, it’s what you see when the quantum number is very 
large, that is when the energy of the system is very large. So these are 
important points. Let me summarize.



We will do the probabilities calculations in the next part of the lecture. So in 
summary, ∫ ψn(x)2 dx between -∞ to ∞ is I would say √α x, so it doesn’t 
matter, but yeah. Let me just write that, okay, √αx, and then there has to be 
some dimension factor here to ensure that you are integrating. This is equal 
to -- ψn2 = 1, best would be to write this as ∫ ψn(y)2 dy between -∞ to ∞  is 1, 
okay. This is the normalization, which means essentially, it’s the area under 
the square of the wave function graph, okay.



Second, tunneling, probability of finding the oscillator, a simple harmonic 
oscillator, in classically forbidden regions, non-0, okay. Third, probability of 
finding the oscillator in different regions is different for different energies, 
different regions is different for different energies. Therefore, there is no 
uniformity except that when n is extremely large, simple harmonic oscillator 
behaves similar to classical simple harmonic oscillator, classical simple 
harmonic oscillator. So these are the things that need to be kept in mind.

What we will do in the next lecture is to study the probability and also 
calculate some of the expectation values like the average value for the 
harmonic oscillator position and the momentum, et cetera. Until then, thank 
you very much.


