
Prof. Mangala Sunder Krishnan: In this segment, let us look at the solutions 
for the harmonic oscillator using the quantum mechanical methods and the 
solution of the Schrodinger equation time-independent hψ(x) = Eψ(x). The  x 
is the position coordinate for the harmonic oscillator motion and the wave 
function is function associated with the harmonic oscillator and it has the 
same probability interpretation as you have with the particle in a one 



dimensional box, namely (ψ)2dx represents the probability of finding the 
harmonic oscillator between x and x+dx.

The H is of course the Hamiltonian operator and the Hamiltonian operator in 
quantum mechanics is obtained from the classical Hamiltonian, which is 
P2/2m by changing the momentum to the operator and also ½ kx2 where x is 
the position operator. In quantum mechanics of course in this case P is to be 
replaced by the standard representation in coordinate with the derivative 
-ħd/dx. It's one dimension so we don't need the partial derivative. It’s ħd/dx, 
which leads to immediately this formula, namely H is -ħ2/2m d2/dx2 as you 
had it in the particle in the one dimensional box with ½ kx2, which is the 
potential energy associated with the harmonic oscillator.

Therefore, the solution that you have to obtain is the solution that Ĥψ = Eψ, 
sorry no cap on the ψ, is equal to Eψ is the solution of the differential 
equation namely -ħ2/2m d2ψ/dx2 + ½kx2ψ - Eψ = 0. So second order linear 
differential equation. This lecture will not tell you how to solve this 
differential equation, but it will tell you that if you rewrite this by introducing 
a simple parameter say for example lambda = 2mE/ħ2 and another constant 
α or α2 as km/ħ2.



If you introduce two new constant, then it's possible for you to write the 
differential equation as d2ψ/dx2 + (lambda-α2x2)ψ = 0. I think verify, this will 
be one of the items for you to check.

It is possible to transform this into what is known as the Hermite’s differential
equation for which solutions have been known for more than hundred years 



when this itself was proposed. In fact, the Hermite differential equation, let 
me write that down, Hermite differential equation is d2H, the Hermite 
function, dx2 - 2x dH/dx + (lambda/α - 1) H = 0. Now I have just pulled this 
out of nowhere, but it does not matter what is important is the wave 
functions ψ are going to be associated with what are known as the Hermite 
functions or Hermite polynomials, and will also have a component called the 
Gaussian, which is e-αx2/2, this Gaussian and the Hermite polynomial x will 
determine the solutions of the harmonic oscillator.

The mathematics is involved. We don't need to worry about it. What I would 
do is to write down directly the solution of this equation, which you have 
here, this equation. And then we will only examine the nature of the solutions
and the consequences of the solutions rather than solving the differential 
equation itself. This can be referred to at a later time.

So what are the solutions for the harmonic oscillator?

First of all, there are an infinity of solutions. H ψn(x) = En ψn(x) and the 
formula for En turns out to be, when you solve the Schrodinger equation, En is
ħω (n+½) and n is the quantum number, which can take values 0, 1, 2, to 
infinity, n is the oscillator quantum number. And for each value of n, there is 
a ψn, there is a wave function ψn. The general formula for ψn when you do the 
mathematics is given by a normalization constant, which also depends on 
this quantum number n and an exponential of -αx2/2 times the Hermite 
polynomials Hn (√αx), okay.



These are the solutions or in whatever we have described so far these are 
also known as the eigenfunctions of the harmonic oscillator Hamiltonian. The
eigenvalues are En.

Go back and look at the constants α and lambda. Alph2 is km/ħ2, α2 is km/ħ2, 
okay. K is the force constant, which is mT-2 x m and ħ is (mL2T-1)2. So what 
you have is 1/L4. Therefore, α2 has the unit (length)-4 or α has the dimension 
-- I mean α2 has a dimension of (length)-4 and α has a dimension of L-2. That 
should make sense because x is a position and therefore it is also the length 
from the equilibrium, a distance from the equilibrium. Therefore, you see that
αx2 is dimensionless. Otherwise, e-αx2/2 doesn't make sense, okay.

So the constants have been chosen to get some of these physical 
parameters clear and the Hermite polynomial, which is a function of position 
is multiplied by square √ of α and you can see that square √ of α is length 
inverse, okay, length inverse therefore, square √ of αx is also dimensionless 
so that you can add various powers.



The Hermite polynomials are solutions of what is known as the Hermite 
equation, which I wrote down earlier and the Hermite polynomials are 
defined for various values of say let me write Hn(y) if I put the argument as y 
instead of √ αx, okay. Why is √ αx in this case? If I write Hn(y) and n = 1, 2, 3,
et cetera, then the results are already known namely H0(y) = 1, H1(y) = 2y, 
H2(y) = 4y2 - 2, H3(y) = 8y3 - 12y and so on, okay. So if you write this in terms 
of √ αx H₀ (√α x) = 1, H1 is 2√α xm, H2 is 4αx2 - 2, and H3 is 8√α -- α √α, that 
is α3/2 x 3 - 12√α x and so on.

There are relations that the polynomial satisfy between Hn, Hn+1 and Hn-1, 
there is a relation called recurrence relation. Stop for a minute.

The recurrence relation between these is also known in mathematics it is 
Hn+1(y) - 2yHn(y) + 2n Hn-1(y) = 0.



What this tells you is to obtain harmonic oscillators for higher values, I mean 
larger values of n from the harmonic oscillator -- the Hermite polynomials for 
smaller values. For example H0 and H1 if you know, then you can calculate 
H2(y) - 2y H1(y) + 2, since n is 1, this is 2 H0(y) = 0, and this is 1 and H1(y) is 
known as 2y, therefore you see H2(y) is 4y2 - 2, which is what I had written 
down earlier, okay, see that. So if we knew H0 and H1 from mathematics and 
also from the recurrence relation, if we know the recurrence relation, then in 
principle we can calculate any Hermite polynomials Hn from the previous two 
Hermite polynomials. And so one exercise would be to show that H3(y) = 8y3 
- 12y and so on.



So one can reproduce these tables, and let me just show you from one of the
lectures that I have had earlier. One can see the table here for various values
of the Hermite polynomials. In this table of course y and x have been 
interchanged, you can see that H naught of X and one can go on and 
calculate H₀, H1 and H2 and what you see here is up to H8.

One thing that should be noted is that the even-numbered polynomials 0, 2, 
4, 6, 8 are all even functions of X H0(x) = 1, H2(x) = 4x2 - 2, which doesn't 
change if X is negative or positive and if -x or +x. H4(x) again is x4x2, 
therefore, it’s an even function of x. H6(x) is even. Therefore the Hermite 
polynomials also give us a series of functions, which are odd or even 
depending on whether the quantum number associated with the harmonic 
oscillator problem is odd or even. This is something that we have to 
remember when we do some of the computations regarding probabilities and
average values using harmonic oscillator eigenfunctions.



So let me summarize this with the only other thing that I have not yet 
mentioned namely if we write ψn(x) as a normalization constant N and an 
exponential e-αx2/2 multiplied by the Hermite polynomial Hn(√αx). The one 
more unknown quantity that we have is the normalization constant N.



And of course N is such that the ∫ ψn*, which this case is the same as ψn(x) 
ψn(x)dx between the limits - ∞ to ∞, because the harmonic oscillator position 
coordinate can go the negative direction as well as in the positive direction, 
and if you take this theoretical limit that the x can go all the way to - ∞ and 
to ∞, then the normalization constant requires this condition namely -- can 
be obtained from this condition namely ψ*n(x) ψn(x)dx = 1, which for n=0, for
example if you want to know what dm0

2 is that’s obtained as follows, namely 
N0

2 ∫ e-αx2 dx between - ∞ to ∞ is 1, because the Hermite polynomial for n=1 
is 1, and this is a standard integral. Its value is known. This integral is √π/α, 
therefore, the harmonic oscillator normalization constant N0 = (α/π)¼, okay. 
Thus, ψ0 what is called the ground state wave function or the lowest energy 
solution. E0 - ħω/2, because n + ½ will give you only ½, n is 0, 0 = ħω/2 and 
ψ0(x) = (α/π)¼ e-αx2/2, okay.

In a similar fashion, one can calculate Nn by having the normalization 
constant evaluated using these types of integrals, e-αx2 x2n -∞ to ∞ dx. If you 
know the value of this integral for all values n = 0, 1, 2, 3 et cetera, then it's 
possible for you to calculate the normalization constant Nn.

In some of the problems and quizzes that follow this lecture, I would suggest 
that you calculate these constants for the first excited state or the second 
energy state like E1, E2, E3 et cetera. You can easily calculate this using 
simple integral formulas and this integral is known from integral tables, okay.
You can also calculate this using elementary integration. So the solutions 
therefore Hψn = Enψn or given as ħω (n+½) and the ψn as e-αx2/2 Hn(√αx).



In the next part, we will see what these things mean in terms of a pictorial 
representations and also what the probabilities and an important concept 
known as the zero-point energy. Thank you.


