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Prof. Mangala Sunder Krishnan: In this segment, let us look at the solutions
for the harmonic oscillator using the quantum mechanical methods and the
solution of the Schrodinger equation time-independent hy(x) = Ey(x). The x
is the position coordinate for the harmonic oscillator motion and the wave
function is function associated with the harmonic oscillator and it has the
same probability interpretation as you have with the particle in a one



dimensional box, namely (y)2dx represents the probability of finding the
harmonic oscillator between x and x+dx.

The H is of course the Hamiltonian operator and the Hamiltonian operator in
quantum mechanics is obtained from the classical Hamiltonian, which is
P2/2m by changing the momentum to the operator and also %2 kx? where x is
the position operator. In quantum mechanics of course in this case P is to be
replaced by the standard representation in coordinate with the derivative
-hd/dx. It's one dimension so we don't need the partial derivative. It's hd/dx,
which leads to immediately this formula, namely H is -h?/2m d?/dx? as you
had it in the particle in the one dimensional box with % kx?, which is the
potential energy associated with the harmonic oscillator.
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Therefore, the solution that you have to obtain is the solution that Hy = Ey,
sorry no cap on the y, is equal to Ey is the solution of the differential
equation namely -h?/2m d?y/dx? + Ykx?y - Ey = 0. So second order linear
differential equation. This lecture will not tell you how to solve this
differential equation, but it will tell you that if you rewrite this by introducing

a simple parameter say for example lambda = 2mE/h? and another constant
o or a? as km/h2,
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If you introduce two new constant, then it's possible for you to write the
differential equation as d?y/dx? + (lambda-a?x?)y = 0. | think verify, this will

be one of the items for you to check.
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It is possible to transform this into what is known as the Hermite’s differential
equation for which solutions have been known for more than hundred years



when this itself was proposed. In fact, the Hermite differential equation, let
me write that down, Hermite differential equation is dH, the Hermite
function, dx? - 2x dH/dx + (lambda/a - 1) H = 0. Now | have just pulled this
out of nowhere, but it does not matter what is important is the wave
functions y are going to be associated with what are known as the Hermite
functions or Hermite polynomials, and will also have a component called the
Gaussian, which is e®?2, this Gaussian and the Hermite polynomial x will
determine the solutions of the harmonic oscillator.

The mathematics is involved. We don't need to worry about it. What | would
do is to write down directly the solution of this equation, which you have
here, this equation. And then we will only examine the nature of the solutions
and the consequences of the solutions rather than solving the differential
equation itself. This can be referred to at a later time.

3 Notel - Windows:
Fie Edt

Took Help

e tdt View It Actons
AdHw P i A VAR 28T ol EEEEEER L had

H W 0 = E V00
Fn — ﬁw(m—'z) T TR LEC O

n— 0sullotor CVMMWV\ naamlrH -

For eouh valme of n, Phwe isa A
._o(xz/o_

'\lln(x) = Nn g Hn(ﬁx)

So what are the solutions for the harmonic oscillator?

First of all, there are an infinity of solutions. H y.(x) = E, yn(x) and the
formula for E, turns out to be, when you solve the Schrodinger equation, E, is
hw (n+Y2) and n is the quantum number, which can take values 0, 1, 2, to
infinity, n is the oscillator quantum number. And for each value of n, there is
a Yn, there is a wave function y,. The general formula for y, when you do the
mathematics is given by a normalization constant, which also depends on
this guantum number n and an exponential of -ax?/2 times the Hermite
polynomials H, (Vax), okay.



These are the solutions or in whatever we have described so far these are
also known as the eigenfunctions of the harmonic oscillator Hamiltonian. The
eigenvalues are E,.
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Go back and look at the constants a and lambda. Alph? is km/h?, o? is km/h?,
okay. K is the force constant, which is mT2 x m and h is (mL?T-1)°. So what
you have is 1/L* Therefore, a? has the unit (length)* or a has the dimension
-- I mean o? has a dimension of (length)* and a has a dimension of L2. That
should make sense because x is a position and therefore it is also the length
from the equilibrium, a distance from the equilibrium. Therefore, you see that
ax? is dimensionless. Otherwise, e®?? doesn't make sense, okay.

So the constants have been chosen to get some of these physical
parameters clear and the Hermite polynomial, which is a function of position
is multiplied by square v of a and you can see that square v of a is length
inverse, okay, length inverse therefore, square v of ax is also dimensionless
so that you can add various powers.
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The Hermite polynomials are solutions of what is known as the Hermite
equation, which | wrote down earlier and the Hermite polynomials are
defined for various values of say let me write H,(y) if | put the argument as y
instead of v ax, okay. Why is v ax in this case? If | write H,(y) and n =1, 2, 3,
et cetera, then the results are already known namely Ho(y) = 1, Hi(y) = 2y,
H.(y) = 4y? - 2, Hs(y) = 8y3- 12y and so on, okay. So if you write this in terms
of v ax Ho (Va x) = 1, Hy is 2va xm, H: is 4ax? - 2, and Hs is 8Va -- a Va, that

is o3/2 x 3 -12Va x and so on.

There are relations that the polynomial satisfy between H,, H,+1 and H,-1,
there is a relation called recurrence relation. Stop for a minute.

The recurrence relation between these is also known in mathematics it is
Ho+1(y) - 2yHn(y) + 2, Ha-1(y) = 0.
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What this tells you is to obtain harmonic oscillators for higher values, | mean
larger values of n from the harmonic oscillator -- the Hermite polynomials for
smaller values. For example Ho and H; if you know, then you can calculate
Ha(y) - 2y Hi(y) + 2, since nis 1, this is 2 Ho(y) = 0, and this is 1 and Hi(y) is
known as 2y, therefore you see Ha(y) is 4y? - 2, which is what | had written
down earlier, okay, see that. So if we knew Hy, and H; from mathematics and
also from the recurrence relation, if we know the recurrence relation, then in
principle we can calculate any Hermite polynomials H, from the previous two
Hermite polynomials. And so one exercise would be to show that Hs(y) = 8y?
- 12y and so on.
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The first few Hermite polynomials are given as
Hy(x) 1
Hy(x) 2x
H,(x) 45 -2
Hy(®) 8x> -12x
H,(x) 16x* —482* +12
Hy(x) 32x° -160x° +120x
H(x) 64x5 -480z* +720x - 120
H,(x) 128x" - 1344x° + 3360x> —1680x
Hy(x) 2562° -3594x° +13,440x* -13,440x, +1680

There is a recursion relation between these polynomials which can be used to generate any Hermite polynomial from two preceding ones,

Hy,(x) =2x Hy (x)-20 Hy, (x)
The harmonic oscillator eigen values and eigen functions are obtained in tems of the Hermite polynomials as
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So one can reproduce these tables, and let me just show you from one of the
lectures that | have had earlier. One can see the table here for various values
of the Hermite polynomials. In this table of course y and x have been
interchanged, you can see that H naught of X and one can go on and
calculate Ho, H; and H; and what you see here is up to Hs.

One thing that should be noted is that the even-numbered polynomials 0, 2,
4, 6, 8 are all even functions of X Ho(x) = 1, Ha(x) = 4x2 - 2, which doesn't
change if X is negative or positive and if -x or +x. Hs(x) again is x*x?,
therefore, it's an even function of x. He(x) is even. Therefore the Hermite
polynomials also give us a series of functions, which are odd or even
depending on whether the quantum number associated with the harmonic
oscillator problem is odd or even. This is something that we have to
remember when we do some of the computations regarding probabilities and
average values using harmonic oscillator eigenfunctions.
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So let me summarize this with the only other thing that | have not yet
mentioned namely if we write yn(x) as a normalization constant N and an
exponential e*?? multiplied by the Hermite polynomial H.(Vax). The one
more unknown quantity that we have is the normalization constant N.
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And of course N is such that the [ y,*, which this case is the same as yn(x)
Yn(x)dx between the limits - « to «, because the harmonic oscillator position
coordinate can go the negative direction as well as in the positive direction,
and if you take this theoretical limit that the x can go all the way to - « and
to «, then the normalization constant requires this condition namely -- can
be obtained from this condition namely y*.(x) yn(x)dx = 1, which for n=0, for
example if you want to know what dmy? is that’s obtained as follows, namely
No? [ €2 dx between - = to « is 1, because the Hermite polynomial for n=1
is 1, and this is a standard integral. Its value is known. This integral is vri/a,
therefore, the harmonic oscillator normalization constant No = (a/m)*, okay.
Thus, Yo what is called the ground state wave function or the lowest energy
solution. Eo - hw/2, because n + %2 will give you only %2, nis 0, 0 = hw/2 and
Wo(x) = (a/m)” e 22, okay.
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In a similar fashion, one can calculate N, by having the normalization
constant evaluated using these types of integrals, e*? x?n -« to « dx. If you
know the value of this integral for all values n = 0, 1, 2, 3 et cetera, then it's
possible for you to calculate the normalization constant N,.

In some of the problems and quizzes that follow this lecture, | would suggest
that you calculate these constants for the first excited state or the second
energy state like E1, E2, E3 et cetera. You can easily calculate this using
simple integral formulas and this integral is known from integral tables, okay.
You can also calculate this using elementary integration. So the solutions
therefore Hy, = E. g, or given as hw (n+%) and the y, as e®?2 H,(Vax).



In the next part, we will see what these things mean in terms of a pictorial
representations and also what the probabilities and an important concept
known as the zero-point energy. Thank you.



