
Prof. Mangala Sunder Krishnan: Welcome back to the lectures in chemistry, 
the first course on Elementary Principles. In this series of lectures, we have 
we studied a couple of model problems, namely the particle in a one-
dimensional box, two-dimensional boxes and also the electron in the 
hydrogen atom. Basically, we looked at the solutions and try to understand 
what was meant by quantization and energies and transitions between the 
energy levels and so on. The other extremely important model problem both 
from physics and chemistry is the problem of harmonic oscillators, which is 
also well known from the classical mechanics.

What we would do is to study the elementary quantum mechanical aspects 
of harmonic oscillator using the wave function method. Later in an advanced 
lecture, I will talk a little bit about the different types of raising and lowering 
operator formalisms of harmonic oscillator, but in this set, we would look at it
as a wave function method. And as has always been in the last few lectures, 
we start by looking at the energy of the harmonic oscillator from a classical 
mechanical point of view and then convert that into a quantum mechanical 
Hamiltonian and look at the solutions.



The harmonic oscillator by definition is about small amplitude oscillatory 
motion about an equilibrium position, or periodic motion such as motion on a
circle. These things can be easily understood as caused by a restoring force, 
which is proportional to the displacement away from the equilibrium, but in 
the opposite direction. So let me write down, harmonic motion, small 
amplitude, oscillation about an equilibrium.



If you want to visualize that, here are some simple pictures. So the 
equilibrium position in the first picture is the vertical distance, and you can 
see that the ball oscillates between two extremes rather with a small 
amplitude.

Another example is the usual play that you have with the spring ball and the 
motion of the spring ball is also harmonic.



From the point of view of chemistry if you look at the diatomic molecular 
motion at very low temperatures is very nearly harmonic and the amplitudes 
of vibration of a fairly stable bond that is about the equilibrium distances. 
They are also modeled using harmonic motion. So these are some examples 
of what is meant by a small amplitude vibration or oscillation about an 
equilibrium position.



Now the restoring force F, if you write that, it is proportional to the 
displacement vector from the equilibrium and the mathematics is that the 
proportionality constant is a constant.

And since it is in the opposite direction, it is -kx, and one dimension, we 
would assume that the force is in a direction opposite to that of the 
displacement, so we don't need to worry about the vector arrow here, but 
knowing that the force is that negative derivative of potential with respect to 
the distance or with respect to the position coordinate, this is =kx, and you 
can see therefore, the potential energy V(x) is with -kx, and a -kx. Therefore, 
VF(x) is the <kx dx which gives you kx2/2 plus a constant.



We can always choose that the potential about the equilibrium that is or at 
equilibrium X=0 is 0, which means that the constant can be chosen to be 0, 
this is the minimum or what is known as the minimum in the potential, and 
therefore, the potential energy for a harmonic oscillator as a function of the 
displacement from equilibrium is given by ½ kx2, and k you know is the force 
constant or the spring constant if you are talking about springs, force 
constant. And you know the dimension of k, kx2 is energy so it's very clear 
what k should be. And the Hamiltonian if you have to write for the harmonic 
oscillator is obviously the kinetic energy plus the potential energy of the 
harmonic oscillator.

The potential energy is already given here. The kinetic energy is ½ mv2 or if 
you want to write it using momenta, it is P2/2m, and therefore, the 
Hamiltonian in a classical sense is P2/2m + ½ kx2 where m is the mass of the 
oscillator. If you are worried about a diatomic molecule or vibration of a 
diatomic species, then m is replaced by reduced mass of the diatomic 
molecular system for vibrations, okay.



Also, please remember, the harmonic oscillator is associated with a 
frequency ν or an angular frequency ω, which is 2πν, this is the angular 
frequency in radians per second. This is the frequency linear per second. The
frequency of a harmonic oscillator in a classical form is something that you 
all know, it's 1/2π square root of the force constant by the mass. You see that
the two physical parameters for the harmonic oscillator or the extent of 
stiffness or the harmonicity given by k and the mass of the harmonic 
oscillator m, and these are the only two parameters that go in the classical 
Hamiltonian, namely P2/2m + ½ kx2 and P of course, you know, it's mass 
times the velocity, therefore, it is the parameter for the harmonic oscillator 
or only the m and k, and if you want to write it using the angular frequency, 
you can write this by writing P2/2m + 1/2mω2x2. So this is the classical 
Hamiltonian.


