
Prof. Mangala Sunder Krishnan: Welcome back to the lectures. We will 
conclude the elementary part of the quantum mechanics of hydrogen atom 
with this part 5 where I shall give a brief description of radial functions and 
radial distributions of the hydrogen atom.



Now recall that the hydrogen atom they functions for the Schrodinger 
equation that is the solutions have been earlier represented by ψ with three 
quantum numbers n, l and m as a function of the three coordinates r, θ and 
φ, and this was written as or R n,l of the radial coordinate r and Y l,m (θφ). 
The φ or φ, I seem to have mixing these two things but remember φ or φ in 
the context, I mean they both mean the same thing for this lecture.

The radial function or n,l (r) and the radial distribution that we will consider 
in this lecture, namely it is r2 [R n,l (r)]2 are the wave function component 
and the probability distribution for the radial part.

Now we have not talked about the solutions of these earlier other than briefly
mentioning that the radial functions have with the quantum number n,l (r) 
have the range for the quantum numbers as n = 1, 2, 3 all the way up to ∞ 
and l = 0, 1, 2, up to n-1 for any n. Therefore, when n=1 , we have the radial 
function, which R 1,0 (r) and solution of the radial Schrodinger equation 
using the calculus of differential equation, the solutions of differential 
equation, gives us what are known as Laguerre polynomials and the 
exponentials and this particular function R1 (r) is like e-r/a₀ where a₀ is the 
Bohr radius, and 0.53 Å.

For n=2, we have two solutions, namely l=0 and l=1, and the function for 
l=0 is (1 - r/2a₀) e-r/2a₀, okay. For l=1, the radial function happens to be r e-r/2a₀, 
okay. I have neglected the normalization constants or the P factors 
constants, but if I don't, if I have to write this exactly then R 1,0 (r) = 2/(a₀)3/2 
e-r/a₀.



This normalization constant is obtained by the following procedure, namely 
the ∫ ψ*nlm ψnlm dτ = 1, which when we use the spherical polar coordinates 
has the following form ∫ r=0,∞ [R n,l (r)]2, because this is real, and r2 dr, 
which is the radial part for the dτ, then you have ∫ θ=0,π sinθ dθ ∫ φ=0,2π 
dφ Y l,m (θφ)|2 = 1. Now you see that the dτ is essentially r2 dr dθ sinθ dφ, 
and the rest of it is ψ*nlm ψnlm. Therefore, when you do this integral 
independently of the θφ integral, note that the definition of Y l,m are such 
that that this part is 1, and therefore, the radial part is given by this 1.

And now you can see immediately why the quantity [R n,l (r)]2 is called the 
radial probability or radial distribution, radial probability or radial distribution,
because this probability when it is calculated for all values of r from 0 to ∞ = 
1. Therefore, you see the radiant probability in the case of the hydrogen 
atom is not just the [R n,l]2 but it is multiplied by the r2 and that's important 
to remember. It's not just the square of the function.



Let us look at these functions in the pictorial form. The first one is like e-r/a₀. 
This n=1, l=0, and this is the straightforward exponential, the radial function,
and the integral, the square of this function -- if you write the normalization 
constant also, if you write that, remember it is 2/a₀3/2, okay. Therefore, if you 
do that, the integral that you have to worry about for radial probability is r2 e-

2r/a₀, as this is the square of the radial function and then you have the 
multiplied by 4/a₀3, okay. So this is the radial probability, this is the radial 
function, okay.

The radial function is given like this and the radial probability, if you have to 
plot it, if I have to make a brief plot of this, I don't have it in the screen here. 
If I do the plotting for as a function of r, if I do the R2, the radial probability 
goes like that. It is 0 at R=0, the function, radial function, itself is not 0 at 
R=0, but the radial probability, because of this r2, is always 0 at the nucleus 
as the value, the probability -- density is 0 and the probability distribution is 
that. This is r2 R2. The area of this for the end of this graph is equal to 1. 
That's a normalization.



What about the radial function for the hydrogen atom at n=2? There are two 
values l=0 and l=1. So if I have to look at to the l=2, the functional form if 
you remember I wrote down as (1 - r/2a₀) e-r/2a₀. You can see clearly that when
r=0, this is 1, so you start with some number depending on what the 
constant in front of A is, that's a maximum here but at or equal to 2a₀, as r 
increases from 0 to 2a₀, you see that the function drops off while the 
exponential is also -r/2a₀. So you see that this function goes down, but for all 
values of r > 2a₀, this will increase, because this will increase but the 
exponential will decrease, therefore after some time, the function goes such 
that the exponential tapers it off. So this initial increase is due to this. This is 
the part of what is known as Laguerre polynomial, which are solutions for the
radial equation, okay.



For l= -- this is l=0, this is the function for l=0 and for l=1, n=2, the radial 
function that you have is r e-r/2a₀ with again some pre-factors that is the 
normalization constants. You can see that this function is 0 at r=0, as r 
increases, this increases, but this decreases. So there is a competition 
between the increasing r up to a point, there is a maximum, and then the 
function is reducing due to the exponential, even though r is increasing, the 
exponential dominates and therefore the function goes to 0 for large values 
of r. This is the radial function for n=2, l=1 and the radial distribution is r2 
multiplied by square of this function, which is again another r2 e-r/a₀. This is 
the radial distribution. This [R 2,1 (r)]2 multiplied by r2. So again the 
maximum that happens is quite far away from the 0.



n=3 has three possible functions, namely l=0, l=1 and l=2. This one is l=0. 
The form of the radial function is essentially [3 - er/a₀ + 2r2/a₀]2. This is the 
quadratic in front of the function multiplied by e-r/3a₀, n=3, okay. The quadratic
has two solutions, both of which are positive, and you can see that those two
solutions are these. That is a quadratic goes to 0 for these two values of r. If 
you factor this out, this quadratic with the two roots, these are the two roots,
and you can see that when r=0, the function is positive, it's non-zero 
because of the 3 and the pre-factor in front of it, the normalization factor in 
front of it. It's somewhere here. And then as r increases, if you write this as 
the two roots quadratic (r-a1) (r-a2) e-r/3a₀ and if a1<a2, you can see for r<a1, r 
is also less than a2, therefore, this product is positive and the exponential is 
always positive, but a small number, the function is positive between 0 and 
the first one, first root.

Between the first and the second root, because this product is negative r>a1 
but r<a2, the function is negative, but it's also multiplied by e-r/3a₀, and for 
r>a2, this is positive so the function tends to increase as r2. However, e-r/3a₀ 
eventually brings it down to 0, okay. So it has two roots called nodes.



The previous one has one node n=2, l=0. When n=2 l=1, no nodes. When 
n=3 l=0, there are two nodes. When n=3 and l=1, the radial function turns 
out to be 3,1 (r) turns out to be barring the normalization constant, it is r [1 - 
r/6a₀] e-r/3a₀. So you can see that this is 0 when r=0 and then r=6a₀. So 
between 0 and 6a₀, the function increases, and at r-6a₀, it goes to 0, okay. 
And for all values of r>6a₀, this whole thing is negative and you can see that 
the function will decrease r2, okay, but the e-r/3a₀, eventually brings it back to 
0. So here is the maximum and then the function goes to 0, but only one 
node.



And the last one when you look at n=3 l=2, the function is r2 e-r/3a₀. This is like
the radial function R 3,2 (r). I mean I have not put in the normalization 
constant, but that's what it is, and the r2 has only 1 maximum and then the 
exponential eventually goes to 0, no nodes.



Therefore, the Laguerre polynomials, which are therefore for various values 
of n and l are basically polynomials in -- the order of the polynomial or the 
degree of the polynomial is m-l-1. That’s the number of radial nodes, 
because if the polynomial is of this degree, it has that many roots. So you 
see that when n=1 l=1, there are no root, no nodes, when n=2 l=0, there is 
on node, no node, then 2, 1, 0, when n=4, you have 3, 2,1, 0. So the number
of nodes are like this.

And for angular functions, we saw already for any l has l nodes. So the total 
number of radial plus angular nodes for any function is (n-l-1) + l = n-1. 
These formulas are somewhat familiar to you from the elementary school 
introduction of the hydrogen atom functions as pictorial functions, but you 
can see that the radial functions are like this and the radial probability is the 
square of the radial function multiplied by r2.

So let me conclude by putting all these functions together for each value of 
n. So this is for n=2, the two functions are l=0 and l=1 gives you an idea that
the larger part or the maximum value of these functions are slightly farther 
from the maximum values that you would see for n=1. This is a statement 
that the 2s orbital is more extended than the 1s orbital, the maximum for the
2s orbital or the probabilities for the electron in the 2s orbital are maximum 
when it is slightly farther away compared to the electron being in the 1s 
orbital where the maximum is closer to the Bohr radius, okay.

And the same thing happens for n=3. The maximum is even shifted further 
and there are two nodes. So if you look at the radial square functions, 



namely the r2 [R 3,0 if you square, if you look at that function, the radial 
probability will look like this quantity here. The radial probability will look 
somewhat like that with the two nodes, corresponding to the points where 
this polynomial, the radial function goes to 0, okay. And then for 3,1, you will 
have two maxima and for 3,2 only one maxima, but the maximas are all 
towards the farther side, meaning that the 3s orbital is much more extended 
in space than the 2s orbital, than the 1s orbital, and the maximum of the 3s 
orbital is quite far away compared to that of the 2s orbital, and that is also 
far away compared to that of the 1s orbital.

So this picture of Bohr having circular orbits drawn those circle essentially 
represent something close to a maximum. We have now replaced the circle 
by a probability distribution through a more exact treatment of Schrodinger, 
but then the only question that I would not be able to answer, why 
Schrodinger equation. We don't know the answer, okay.

Let me conclude this lecture with a note on the statements probability 
distributions. The wave functions ψnlm are chosen to be normalized wave 
functions, so if I put all the three coordinates by the abbreviated symbol τ, 
then it is ψ*nlm ψnlm τ dτ, the integral is equal to 1. This is normalization. From 
the functions given in the lecture notes for the individual R n,l (r) and the Y 
l,m the integral note takes the specific representation as a triple integral r=0 
to ∞, θ=0 to π and φ=0 to 2π, is of radial function square, you have the 
absolute value of the spherical harmonics (θφ)|2 absolute value multiplied by 
the dτ, which is r2 sinθdrdθdφ, okay. That’s equal to 1, and the orthogonality 



of these wave functions as being solutions of a Hamiltonian which is a 
Hermitian Hamiltonian.

I've again introduced a new term called the Hamiltonian as a Hermitian 
operator, which has real eigenvalues for -- all the eigenvalues are real.



The Hamiltonian operator, the wave functions ψnlm(τ) ψ*n’l’m’(τ) dτ. These 
functions are orthogonal to each other and if I have to write that in the 
integral notation, the answer is the δnn’, δll’, δmm’. This is Kronecker delta, 
meaning delta δij = 1 if i=j, δij=0 if i is not equal to j. Therefore, if the n is not 
equal to n’, if l is not equal to l’, if m is not equal to m’, any one of them, any 
pair of them if they are not equal, the wave function is -- the wave functions 
are orthogonal.

Therefore, the wave functions being already normalized are thus known as 
orthonormal basis functions for all other problems of atoms. If we need to, 
we can always use the hydrogen atom wave functions as the basis functions,
orthonormal basis functions, representing the wave functions for any other 
atom or any other system of nuclei and electrons together, we wish to. I 
mean we would not use that, but these are analytically known, that is 
analytically represented, and we do not have much more of such analytic 
representations for other atoms. In fact, for any other atom which has more 
than one electron, we do not have such analytic solutions. Therefore, the 
hydrogen atom solutions are extremely important.

I have not covered the hydrogen atom here in the form of the actual 
mathematics and the solution of the differential equation. That's usually 
given in a higher or a slightly more advanced course, but please remember, 
we were trying to study the functions and represent them and look at their 
properties with the confidence that these functions have been derived by 
mathematicians and physicists and have been shown to be exact. Hydrogen 
atom is an extremely important problem in the understanding of the 



quantum mechanics of atoms and molecules and the angular distributions, 
the radial probabilities, the radial distributions, all these things enhance 
one's capability in using similar mathematical techniques and tools in the 
understanding of atoms with many electrons, and the only method that we 
can use for such studies are known as approximation methods.

We don't have exact solutions for the differential equations. We use 
approximation methods known as perturbation methods or variational 
methods, but those will form part of a lot of course, and as far as this 
elementary introduction to hydrogen atom is concerned, I will leave the 
hydrogen atom at this point and move on to looking at the harmonic 
oscillator in the next set of lectures. Until then, thank you very much.


