
Prof. Mangala Sunder Krishnan: Welcome back to the lecture. We will 
continue with the analysis of the solutions that we have proposed for the 
hydrogen atom.

The equation beam the Schrodinger equation Hψ = Eψ ψ(r,θ,φ) and we have 
proposed this to be a radial part and the angular part containing θ and φ and 



these two together written as a spherical harmonics of two dependents, 
okay. So this is the formal structure that we have for the solutions and the 
wave functions, when we solve these differential equations, the wave 
functions will depend on three quantum numbers n, l, m, these are the 
standard representations for the quantum numbers. The values for these 
quantum numbers are n goes from 1, 2, 3 to ∞ and the value of l is limited by
the choice of any n it goes from 0, 1, 2 up to n-1, and the value of m is also 
chosen by the values of l, namely 0, ±1, ±2 up to ±l. Therefore, the wave 
functions are given by these three quantum numbers.

And if we write this ψnlm with n l and m or (r,θ,φ) as the radial function n l 
dependent on both the quantum numbers and the spherical harmonics ylm 
(θφ), the first value is ψ1, n=1, and the only choice that we have for the l an 
m are 0 and 0, 1, 0, 0. This is known in the standard representation as the 1s
orbital. The next quantum number that we have is the n is 2, and therefore, 
we have the wave function that the n quantum number 2 and l can be 1 or 0,
and if the L is 1 the m can take the three possible values namely 1, 0 and -1, 
1, 1, 2, 2, and therefore, the three wave functions will have this 
representation 211 ψ210 and ψ21-1, these three, okay.

The overall energy is a solution in the radial part of the equation, therefore, 
this is the E1, the overall energy will depend only on n, all of these will have 
the same energy E2 and when n is 2 l can be 1 or 0, and therefore, m will be 
0, other wave function ψ200. This is to s orbital and the l=1, they are all known
as P orbitals and this is the 2p orbital.



Likewise for n=3, you will have l = 0, 1, or 2 and l=0 will give you m=0. This 
will give you three values 0, ±1, this will have five values 0, ±1, ±2. 
Therefore, for any n, there will be n2 wave functions. All of which are 
degenerate. They all have the same energy according to the formula that En 
given by the standard formula -hcRm/n2 where H is the Planck's constant c is 
the speed of light, okay. This is something that you are familiar from the 
Bohr's model and also from the Schrodinger equation gives exactly this as 
the solution except to that, it has n2 degeneracy for every n, and the wave 
functions are given according to this particular format.



Now what we will do is, we will see these wave functions in two parts, the 
angular part first, which brings to you the results in some familiar form to 
what you already know, namely the orbital forms that you have seen, the 
shapes of the various atomic orbitals are given by the angular parts, okay. 
Now remember θ and φ are polar coordinates and in sphere θ and φ have the
limits of θ=0 and π and φ has the limits of 0 and 2π. So with these variations 
we can create a spherical surface. Therefore, these are what is called the 
maximum values, the maximum --  this is the range of the θ and φ. The 
radius of course goes from a sphere of 0 radius to infinite radius, therefore 
radius goes from 0 to ∞. So this collection of the coordinate system that we 
have reproduces the boundary conditions that we have, namely 0 radius to 
infinite radius and for each radius a spherical surface enclosing a spherical 
volume, therefore the entire three-dimensional volume is reproduced.



This is seen by a very simple animation that one came view here. So let me 
show you that these are the θ and φ. The polar coordinate has 0 to π, so it 
ranges that way and then the φ coordinate taking the semicircle throughout. 
It generates the whole spherical surface. Therefore, please remember the 
angles are limited by this unsymmetrical or asymmetrical choice. One is from
0 to π, the other is from 0 to 2π. If you put both of them 0 to 2π, you will 
generate the spherical surface twice. You will generate the infinite volume 
twice. Therefore, you do it you get the value two times that, therefore it's not
correct. The spherical coordinates have this as the limits.



Now let's look at the series of functions that we wanted to see pictorially, 
okay. So let me write some of these spherical harmonics as solutions. When 
l=0 and m=0, the spherical harmonics Y is 0, 0 is not dependent on any 
angle and it has a value 1/√4π, no angular dependence. When l=1, and m=0,
the spherical harmonic is Y l, m is 1, 0 (θφ) and it has the value that √3/4π 
cosθ independent of φ. When l=1 and m=±1, the spherical harmonics is Y1 
±1 (θφ) and it has the form ±√3/8φ sinθ e±iφ. This is π, this is φ, complex 
functions. In general, for any m, the φ dependence is given by this function 
eimφ, and you can see that here, this is ±1φ -- 0φ,which is of course 1. 
Therefore, these are what are called the spherical harmonics for the P orbital.



And what are the values for the n=2, which are known as the D orbitals. All 
three of these are P orbitals and these are D orbitals. You have l=2 if m=0, 
you have the spherical harmonics Y 2,0 (θφ) and the value is given by √5/16π
(3cos2θ - 1) and when m is ±1, Y 2, ±1 (θφ) has a ∓√15/8π sinθ cosθ e±iφ, 
and when m is ±2, the spherical harmonic is Y 2,±2 (θφ) and that's given by 
√15/32π sin2θ e±2iφ, okay. So you can see that P orbitals are all functions of 
cosθ or sinθ raised to the power 1, that is the -- it's a monomial. If l=2, you 
can see that it's 3 cos2θ, but one is nothing but sin2θ + cos2θ, therefore it is 
2cos2θ - sin2θ. So it is a function of cosθ sinθ, but degree 2, polynomial of 
degree 2, and likewise, for sinθ cosθ, sin2θ. So all the ls, the spherical 
harmonics, for each and every l, you will have the θ dependent part as a lth 
degree polynomial homogeneous. It will involve sinθ and cosθ but the total 
power of sine and cosθ will be n.

The φ part is Y l,m the φ part is eimφ, that’s it. Therefore, the structure of the 
spherical harmonics and the patterns are clear. How do we get these 
constants in front of it and how do we get the ±signs et cetera, that's more 
mathematics, but this is through the normalization of the spherical 
harmonics to unity over the sphere, and therefore, these constants would be 
shown in the next part as the actual numbers that come out when you 
normalize the spherical harmonics like the way you normalize the wave 
functions by taking ψ*ψ, dτ, the integral as 1. Here, you would take the 
spherical harmonics Y l,m * Y l,m and taking through the spherical volume 
elements, namely θ = 0 to π and φ = 0 to 2π, and the spherical differential 
element, sinθ dθ dφ. When you do that, you will get all these constants 
clearly, okay.



Now let us see the pictorial representation patience for the real part of Y 
1,±1 and the imaginary part of Y 1,±1 and the function Y 1,0 which is real 
anyway. It is a function of cosθ. And here, this will contain sinθ, the real part 
will contain sinθ cosφ and the imaginary part will contain sinθ sinφ. So we 
shall see this in the spherical coordinate pictures, representations. Let’s look 
at the Y 1,1. So first let me see Y 1,0. Here, I am plotting Y 1,0 on 1 value of 
φ, but this function you know is cosθ Y 1,0. Therefore, it's the same for all 
values of φ. So if you know the shape of this function for θ, then we can 
reproduce that shape for all the values of φ. And  what is done here is cosθ is
plotted on the θ coordinate.



Remember the θ coordinate for the polar axis system starts with some Z 
direction where θ is 0 and then θ is some value, some value, then it's 90 and 
then it's 180. So the value of cos θ is plotted on that value of θ radius, and 
then you connect them, okay. So this is θ=0 cosθ=1, 15 cosθ=0.8. You mark 
it on the radius, the entire length, okay, and then you connect all these 
points to get a representation for cos θ on polar system, spherical polar 
system. This is pollard. Once you do it for all values of φ, you will get it for 
spherical polar. I have given a different color, because cosθ is negative for 
θ>90 degrees, but the values are symmetrical on either side of the X axis, 
okay.



So that's the shape of cos θ in a polar coordinate system. And now in a 
complete sphere, how does this look like? It's the same graph for all values of
φ.

Therefore, if you plot this, okay, so here you will see Y 1,0 plotted for all 
values of the azimuthal angle φ and this is what you have seen for a given 



value of θ from 0 to π. Therefore, if you plot it for all values of φ. You will get 
the same graph with of course the plus and minus signs not on the either 
side of the X axis, because you know cosθ is negative for θ>90 and that's 
below the X axis and for above the X  axis cosθ is positive. Therefore, this is 
the standard representation of the P orbital that you see ±lobe, which is 
nothing but the Pz orbital.

Sinθ cosφ and sinθ sinφ, which are along the other two directions. So let's 
first of all see sinθ plot, okay. Cosφ I've kept it as 1 by choosing P=0. So this 
plot is along the X axis and then this plot needs to be rotated, as you go for 
various values of φ while rotating it for various values of φ, you must also 
multiply the sinθ plot by cosφ. Therefore, it will go to 0, it will go to negative, 
it will become 0, it come to positive and so on.

So you can see first of all the sinθ on the polar graph here, which does not 
have any negative values because sinθ is positive in the range 0 to 180. It 
starts from 0. Again, I remind you the value of sinθ is plotted along that θ 
direction by marking the points, and the table gives you what the value is for
a few of the θs. So that's sinθ in one direction with cosφ=1 that is along the 
X axis.



If we plot this for all values of φ, you'll actually see that this graph is 
multiplied by cosφ. Therefore, it shrinks to 0 when it comes to Y, because 
along the Y axis φ is 0, 90 degrees. Therefore, cos90 is 0. Along the minus X 
axis φ is 180, therefore cosφ is -1. Therefore, from Y all the way to -Y, when 
the φ values are between 90 and 270, cosφ is negative. Therefore, whatever 
you see here will have the negative sign and whatever you see on this side 
will have the positive sign.

So sinθ cosφ Y 1,1 Y 1,0, these are the two plots. The third function which is 
the imaginary part of the Y 1,1 is sinθ sinφ. The difference between sinφ and 
cosφ is 90 degrees. Therefore, all you would see when you plot that function 
is that this is rotated by 90 degrees.



So we start with the Y axis, because sinθ sinφ, if you want to plot, you plot it 
on a sinφ maximum, which is along the Y axis, and then you will see that sinφ
is positive between φ = 0 and 180, 0 and 180 as you see it, it’s between the 
X and -X axis and 180 to 360 when sinφ is negative, it's along the other side 
namely -X to the X axis along the -Y, and therefore, you see the natural 
function that plot that you see here, and sinφ goes to 0 or φ = 180 and φ = 
360. Therefore, this is plotted along the X axis. I mean that proves the point. 
The trigonometric functions look different, but the functions have the same 
representation, graphical representations on a sphere, because the sphere 
doesn't care for what is X axis or Y axis or Z axis, all three are the same. 
Therefore, the orbitals are symmetric about the three mutually perpendicular
directions and it's your convention to choose a right-handed coordinate 
system and a standing up axis, because most of us see standing up. I mean 
it can be lying down or it can be standing down. The Z axis is as arbitrary as 
the sphere’s direction is.

Therefore, if you go to the nuclear magnetic resonance research lab, you will 
see the Z axis is horizontal, because the magnets are like this and therefore 
this is the Z and you are XY plain is this way, right. So it's your choice. On a 
spherical coordinate system, when you block the spherical harmonics Y l,m, 
you get exactly the distributions and the shapes that you have seen in your 
textbooks and that's the beauty of it, and these functions are exact solutions 
for the hydrogen atom.

In the next part of this lecture, we will continue with the D orbitals and I will 
also show one F orbital. So the next lecture is purely an extension of this 



lecture. You don't need to see that part. If you wish, go to the web site and 
see all the 15 plots that we have, that I have put up, the 15 plots are for the 
three P orbitals, the five D orbitals, and the seven F orbitals. Chemistry and 
chemical systems do not require G orbitals right now, because the atomic 
number that we know, maximum atomic number that we know 120 still does 
not warrant a stable atom with a G orbital, so we don't worry about it, but 
spherical harmonics is fundamentally important in all of physics and all of 
engineering, and what you see here is nothing but the representation of a 
spherical harmonic, the real and imaginary part of it on a spherical 
coordinate system. Therefore, these pictures may be useful to anybody who 
wants to look at them, okay not just the chemistry part of it.

We'll continue with the D orbitals in the next lecture. Until then, thank you 
very much.


