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Welcome back to the lectures on chemistry and an introduction to molecular 

spectroscopy. In this and the next several lectures, we shall look at one of the important 

aspects of molecular motion namely, vibrational motion and the details of infrared 

spectroscopy. We will talk about absorption spectrum. And, when it comes to scattering, 

we shall discuss Raman spectroscopy at that point of time with vibrational motion as one 

of the motions to be studied under Raman spectra at that point of time. 
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Here we shall look at the IR spectrum. What is important fundamentally for vibrational 

spectroscopy or for a molecule to show a vibrational spectrum is the presence of an 

electric dipole moment. We shall start with a diatomic molecular system and then it is 

easier for us to understand dipole moment as a very simple concept coming as a result of 

the separation of the positive charge center of the molecule with the negative charge 

center. And, in the case of diatomic molecule, we associate the atoms with certain partial 

charges like in the case of HCl – the bond distance and the fact that, the hydrogen and 

chlorine have electronegativity differences result in an electric moment which is given 



by the product of the charges either positive or negative – the charge separation times the 

distance r. So, the mu d as it is written with a vector notation; dipole moment is a vector; 

and, here the charge distribution is from the positive to the negative center of the charge 

direction. And, the dipole moment points in this direction and it is given by the bond 

distance times delta plus. Dipole moment is an extremely important quantity. And, in the 

case of a diatomic molecule, the oscillation of the molecule – the atoms about the 

equilibrium positions on the atoms, results in the dipole moment oscillating in values. 
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For example, if you think about HCl undergoing molecular vibrations to give a slightly 

larger distance and a shorter distance – HCl; if you do that, then the r here – it is r prime; 

and, some other value. The dipole moment mu d changes; it oscillates from a small value 

to a slightly larger value and back to a small value. This is an electric charge oscillation – 

electrical oscillation and the electromagnetic field with the oscillating component of 

electric field.  

If these oscillations are in resonance; then, there is a resultant absorption of energy and 

the molecule undergoes molecular vibrational excitation; it goes to a higher energy level 

and then emits radiation and so on. Therefore all the processes of spectroscopy become 

active and it is due to the fact that, the electrical dipole moment – the permanent 

electrical dipole moment that is present in the molecule interacts with the oscillating 



electric field of the electro magnetic radiation. So, this is a fundamental requirement for 

the infrared intensity to be measurable. 

If a molecule such as hydrogen, where both the atoms are identical, that is, homonuclear 

diatomic molecules do not show IR spectrum, do not reveal any – there the information 

through IR spectrum. On the other hand, they can be studied using Raman spectroscopy 

when we study scattering later. But, for the purpose of the vibrational infrared 

spectroscopy, homonuclear diatomic molecules like that or N triple bond N, whatever 

that you have molecules, which do not have a permanent dipole moment, because there 

is no charge separation between the positive charges and the negative charges.  

This is one point. And therefore, there is no moment associated with that; the first 

moment, there is no none. Therefore, such molecules are not infrared active. They are 

called infrared inactive. And, HCl is called infrared IR active. And, so is carbon 

monoxide, carbon dioxide, polyatomic molecules; polyatomic molecules – there is more 

than one vibrational motion as we will see. And therefore, it is possible for us to have 

infrared spectra for some of the motions. 
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But, in the case of a diatomic molecule, the vibrational motion is one degree of freedom 

motion. Given the fact that, if you have again HCl, hydrogen has three coordinates in any 

space; any access system, hydrogen atom has three coordinates. There is three degrees of 

freedom – linear degrees. And, chlorine has another three coordinates. Therefore, the 



molecule has six degrees of freedom for six independent coordinates as we call them. 

And, of these six, it is possible for us to use three of them to describe the overall 

molecular motion; and, that motion is the translational motion of the center of mass. The 

center of mass is of course, is the point in the molecule, where we concentrate the entire 

mass of the molecule. And therefore, the motion of the molecule in space is the 

translational motion – rectilinear translational motion in any one of the three directions. 

Therefore, three degrees of freedom are due to – three degrees of freedom are due to 

translational motion. 
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This molecule also rotates about two independent axes: the axis that is passing through 

the center of mass and an axis perpendicular to the center of mass. About these two axes, 

the molecule has a moment of inertia, because the atoms are away from the axis system. 

And, if you recall the moment of inertia as the m i r i square, hydrogen and chlorine both 

contribute to that. Therefore, the molecule has the moment of inertia. And, these are the 

two mutually perpendicular axis systems. 

The molecular axis itself that you have right here, the atoms are on the axis; as point 

masses, they do not have a moment of inertia. And therefore, there is no rotational 

energy; there is no energy associated with molecular motion about the axis system. There 

are only two rotational degrees of freedom. And therefore, of the six coordinates – 

independent coordinates or independent degrees of freedom, three are translational, two 



are rotational; and, there is one more, which is the vibrational degree of freedom. And, 

that is the relative motion of the hydrogen, chlorine with respect to the center of mass, 

which is not moving, because center of mass motion is already been taken out into the 

translational part. Therefore, if you have that, the vibrational motion would be – the 

center of mass does not move. So, this is a genuine vibration and there is only one 

vibrational degree of freedom. 
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What is the process of measurement? And, what is the process of understanding the 

vibrational motion in the elementary form? As a harmonic oscillator; of course, we 

started with a little bit of an introductory harmonic oscillator in an earlier lecture. 

Remember that, the Hamiltonian for the harmonic oscillator is the kinetic energy term 

minus H bar square by 2 mu d square by d r square.  

Here mu is the reduced mass of the diatomic molecule. And so, if you have m 1 and m 2; 

then, mu is m 1 m 2 by m 1 plus m 2. This is the kinetic energy. And, the potential 

energy for the harmonic oscillator comes from the Hooke’s law and is expressed in terms 

of the force constants k r square; where, r is the displacement from equilibrium, because 

at equilibrium, we assume that, the potential energy is a minimum. 
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And therefore, if you plot the harmonic oscillator potential energy surface for a vibrating 

molecule; then, if you call, this is a parabolic and let us put the r. This is the equilibrium 

distance called r e. And, any displacement from the equilibrium will result in the force. 

And therefore, a potential energy – half k r minus r e square, which contributes to the 

vibrational energy.  

And, what you have is of course, vibrational frequency associated with such motion for a 

diatomic molecule with the reduced mass, is the angular frequency. If you write it, 

omega is square root of k by mu. The angular frequency is expressed in terms of the 

normal experimental frequency that we measure 2 pi nu. And therefore, the natural 

frequency for harmonic oscillator is 1 by 2 pi square root of k by mu. 
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Harmonic oscillator model gives us energies when you solve the Schrodinger equation h 

psi of r is equal to E psi n E n psi n of r. And, the energies are given as you know from h 

nu times n plus half. And, the vibrational wave functions – psi n of r are given by the 

Gaussian and the Hermite polynomial with a normalization constant – e to the minus 

alpha r square by 2 times H n square root of alpha times r. So, this r is the actual 

displacement away from the equilibrium. It is actually v r minus r e; that I have written 

down. This is the vibrational displacement.  

And, what is alpha? Alpha is square root of k mu by h bar square that you have been told 

earlier in one of the lectures. So, these are the vibrational wave functions – psi n r. And, 

these are the vibrational energies quantized with n equal to 0, n equal to 1, 2, 3, etcetera 

as the possible energy levels, and therefore when you write this in the harmonic 

oscillator, potential energy model. 
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And, if you write the r is equal to r e as this point r is equal to r e; the potential is 

minimum at this point. Therefore, if you write the harmonic oscillator, potential energy 

with the parabolic form; if you do that, then the energy levels are E 0, which is half h nu. 

And then, you have E 1, which is 3 half h nu.  

And then, you have E 2, which is 5 halves h nu and so on. In the harmonic oscillator 

model that we have, the vibrational transitions that we can see or only transitions 

corresponding to the nearby energy levels, you will not be able see a transition from 0 to 

2 in the harmonic oscillator model; this is not allowed; this is not seen. The reason for 

that is the fact that, the dipole moment is a function – is a linear function of the 

displacement or itself. And, it is the electric dipole moment, which interacts with the 

electric field. 
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And therefore, the intensity is given by the quantity the integral of the wave function; 

intensity of transition from says E n to E n prime. If we mark two different energy levels, 

then the integral corresponding to this form minus infinity to plus infinity psi n prime of 

r mu of d, that is a dipole moment psi n of r d r all the way from minus infinity to plus 

infinity. The absolute square of this is proportional to the intensity. And, here you have 

mu d. The mu d is a delta plus or minus, whatever the charge is – times the inter nuclear 

distance r. 

(Refer Slide Time: 15:30) 

 



And therefore, you see that, this wave function integral that you get for the intensity is 

proportional to the absolute square of the normalization constants that you have here. We 

have to do it again; intensity is proportional to the normalization constant N n N n prime 

integral from minus infinity to plus infinity e to the minus alpha r square H n root alpha 

of r H n prime root alpha of r d r; and, the absolute square of this integral times mu d. 

Whole of this is integrated with respect to d r. Now, mu d is delta plus times r. Therefore, 

for I to be nonzero, this integral namely, the integral e to the minus alpha r square H n 

root alpha r H n prime root alpha r r dr from minus infinity to plus infinity. This integral 

should be finite – should be greater than 0. 
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Therefore, calculation of this integral tells you that, if n and n prime are near to each 

other; they are adjacent to each other; namely if n prime is n plus or minus 1, this integral 

is nonzero. This is called the probability amplitude for transition between the level E n to 

E n prime. And, this particular integral is nonzero only when n prime is n plus or minus 

1, because of the fact that, it is the dipole moment which is proportional to the bond 

length; the linear displacement connects Hermite polynomials of any n with only the 

Hermite polynomial next to it – n plus or minus 1.  

Therefore, this tells you that, the vibrational selection rule is precisely what we have here 

namely, delta n is always plus or minus 1; plus 1 is absorption, minus 1 is emission. That 

is when the radiation is emitted for molecules sitting from a higher energy level jumping 



to a lower energy level. Of course, you get the addition – the radiation emitted. 

Therefore, it is absorption or emission. But, the point is selection rule is the change in the 

quantum number is plus or minus 1. 

Now, in this, the remaining lecture, we shall just do a small calculation with some 

numbers and then continue with the molecular system for slightly anharmonic potential 

energies. 
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So, let us consider a simple example of say HCl. Some data are known to us namely, the 

mass of the reduced mass of HCl we know. If we are given the force constant k as, 516 

Newton per meter; please remember – newton is kilogram meter per second square. 

Therefore, newton meter is the same as 516 kilogram per second square. If we are given 

this, we also know how to calculate mu from the atomic masses of hydrogen and 

chlorine. Therefore, we can calculate the harmonic oscillator frequency as 1 by 2 pi – pi 

– square root of k over mu – the reduced mass. 
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In a simple experiment, for us into calculation, you assume 35.45 for the atomic mass. 

So, we will call it as the chlorine 35 isotope and H is 1. Therefore, you are talking about 

the reduced mass as one times 35.45 divided by m 1 plus m 2, which is 36.45. Of course, 

the masses are to be divided by the Avogadro number in order to get the atomic mass. 

And so, if you divide this by Avogadro number square and you have Avogadro number, 

therefore, you will get N A; and, this is in gram units.  

Therefore, you multiply by 10 raised to minus 3 to get you kilograms, so that we use the 

SI units. And, N A is 6.03 into 10 raised to 23. So, with this number, it is easy to 

calculate that, the reduced mass is approximately 0.162 times 10 to the minus 26 

kilograms. The force constant is 516. 
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So, let me write mu here as 0.162 times 10 to the minus 26 kg. And, the force constant is 

516 kilogram per second square. Therefore, you know immediately the frequency nu, 

which is 1 by 2 pi times square root of k by mu is per second, because the kilograms 

cancel out and the per second square becomes per second under the square root. 

Therefore, what the number do you get? You get approximately 2 9 9 4 centimeter 

inverse. You can do it very accurately, but I am just telling you how to do the simple 

calculations. This is the fundamental frequency for the hydrogen chloride molecule 

under the harmonic oscillator approximation. 
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And therefore, it is easy for you to calculate the energies E as h c nu bar because this is 

in wave numbers and you know that this is n plus half. So, you can calculate the delta E 

as nothing other than E n plus 1 to E n – nearest level – n plus 1 to n. If you look at it, 

then this is h c nu bar. And so, the nu bar is known. Therefore, we know the frequency of 

the transition energies. 
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And, another important quantity that we have to calculate before we close this part of the 

lecture is the intensities or relatively smaller as you go from an energy level, for 

example, E 1 – E 0 to E 1, if you calculate that. And, E 1 to E 2, if you calculate this; 

suppose you call this as E 0, E 1 and E 2. And, this intensity is I 1 0; this is E 2. And, this 

intensity you call it as I 2 1. Then, what is the ratio of what is the ratio of these 

intensities? That is approximately proportional to the number of molecules, which are 

here; which will jump up to the second level versus the number of molecules, which are 

here.  

Therefore, you have to also calculate the ratio N 1 by N 0 in order to understand that, the 

intensities of the energy level transitions that you see are also progressively weaker as 

we go from the zero energy level to the first level energy level or first to second or 

second to third and so on. This ratio in this case of a simple diatomic molecule is given 

by the very elementary, that is, quantity known as the Maxwell-Boltzmann distribution. 



So, you have minus delta E by k B T. And, the delta E is of course, h c nu bar at the 

temperature T. And, k B is the Boltzmann constant. 

(Refer Slide Time: 25:29) 

 

So, if you have to calculate these values, the N 1 by N 0, the number of molecules in the 

first excited states in v is equal to 1 state versus the number of molecules in the ground 

state in v is equal to 0 state. If you calculate that, the number turns out to be 

approximately e to the minus 14.38 for T is equal to 300 kelvin; and, it is e to the minus 

7.19 for T is equal to 600 kelvin; so, very small number. This is about 7.5 times 10 raised 

to minus 4. And, this number is about 5.68 times 10 to the minus 7.  

Therefore, you see there is very little population in the first excited state compared to 

molecular population in the ground state. Therefore, for a molecule such as HCl for 

whom the vibrational frequency is reasonably large, please remember – it is 2994 

centimeter from elementary calculation. That is a large vibrational frequency for such a 

molecule. Most molecules are in the ground state and fewer in the first excited state, and 

even less in the second. But, the molecule does not have a vibrational spectrum, it has 

only one line; because all intensities that you talk about from 0 to 1 or 1 to 2 or 2 to 3 – 

all these intensities happen at the same energy. 
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So, if you plot the spectrum as a function of lambda, please remember – the energy at 

which the transition appears is h c nu bar or lambda given by – you can write that. So, if 

you write this as h c by lambda; if the energy of the transition E is given; it is h c by 

lambda. It is a same thing whether E – the delta E that you talk about is from n plus 1 to 

n plus 2 or n to n plus 1.  

All these vibrational transitions; all of them happen at the same energy of absorption 

corresponding to the wavelength lambda given by this h c nu bar or h c by lambda; 

therefore, these is no spectrum for a diatomic molecule in the harmonic oscillator 

approximation. So, how do we correct for this? This is not what you see. 



(Refer Slide Time: 28:28) 

 

When you see even diatomic molecules at room temperature, you may see more than one 

line. And, how do you correct for that? That we will consider in the next lecture by way 

of considering what are called the vibrational anharmonicity; that is, the vibrational 

motion is not given by half k r minus r e square from displacement from equilibrium, but 

it is actually given. Suppose we call this as x square half k x square; then, anharmonic 

motion essentially means that the potential energy v is approximately given by 

contributions, which are other than the squares. So, you can call it as c 1 x cube c 2 x to 

the power 4 and so on.  

And, of course, we hope that, c 1 is much less than k; c 2 is much less than c 1; and 

therefore, much less than k and so on in order for us to approximately calculate the 

vibrational frequencies and vibrational energies. When you use such an anharmonic 

oscillator model different from the Hooke’s law, which led to the harmonic oscillator 

model; you will see that, the energy levels are not equidistant; they are not h nu into n 

plus half. But, the energy levels are not of – they – they differ by different bounds when 

you go from 1 to 2, 2 to 3 and so on. Therefore, it is possible for you to see vibrational 

satellites as you call them the satellites are essentially translationary; the transitions from 

the higher energies say b is equal to – n equal to 1 to n equal to 2 or n equal 2 to n equal 

to 3 and so on. Such transitions you can see them only as a result of vibrational 

anharmonicity.  



And, vibrational anharmonicity can be modeled by many different processes. We will 

see one important vibrational unharmonic model called the Morse oscillator in the next 

part of this lecture. 

Until then, thank you very much. 


