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Lecture - 25
Spin Relaxation and Bloch Equations II

Hello. We are going to continue a discussion on Bloch equations.

(Refer Slide Time: 00:30)

In your previous lecture we saw that the Bloch equations in the presence of a magnetic

field and an oscillating magnetic field which rotates in the x y plane the time dependence

of the magnetization is given by these 3-differential equations. This for the x component,

this is for the y component and this is the z component. Let us briefly recapitulate how

we  arrived  at  this  3  differential  equations.  Here  this  is  the  Zeeman  magnetic  field

pointing along the z direction, and B 1 is the amplitude of the oscillating magnetic field,

which is rotating in the x y plane with an angular velocity omega here.



(Refer Slide Time: 03:12)

So, how we arrived at this one? We first have this time dependence of the magnetization

in the magnetic field given by this equation. Now when only magnetic field is present

here the Zeeman field then this give rise to this simple differential equation. And then

Bloch introduces the relaxation of this 3 magnetization.

(Refer Slide Time: 03:38)

In this fashion; that is, Mx and M y becomes time constant of T 2, and m z increases with

T 1 to bring the non-Boltzmann magnetization to the equilibrium magnetization here.



(Refer Slide Time: 03:57)

Then the  total  magnetic  field  that  the  magnetization  experiences  due  to  the external

magnetic  field  B  0,  and  the  oscillating  magnetic  field  B  1  cos  omega  T  in  the  x

component, B 1 sin omega T is a y component total magnetic field. Then we get these 3

equations. And here this x small x small y, and small z these are the laboratory fixed x y

z coordinate any particular the B 0 the Zeeman field is applied along the z direction.

So, to solve this one, one can of course, use the mathematical techniques of first order

differential  equation  and  solve  them.  That  is  possible,  but  somehow  it  is  not  very

illuminating. So, we are going to solve this differential equation in a different way using

a special technique called rotating coordinate system. This technique is very much used

in magnetic resonance.



(Refer Slide Time: 05:17)

Suppose I have got a coordinate system, let us call it capital x y and z, and this is rotating

in a certain direction may be let us I have say I have got this capital x and y and z a

coordinate system, which is rotating about an axis at a certain angular velocity omega.

So, in this rotating coordinate system, how is the equation of motion of any vector going

to change? First learn that. Suppose I have got a vector, f which is a function of time. So,

this  could  be  written  as  in  terms  of  are  usual  coordinate  system,  which  is  my  this

laboratory coordinate system, which is x y and z. These are of course, fixed with respect

to space, and this is the vector which is got 3 components, in this coordinate system this

is i vector j. And this is the unit vector k. So, time dependence of this is given by the time

derivative of each of this component here. Nothing new is happening here. See this i j k

and see little vectors fixed along this x y and z direction. So, rate of change of this with

respect to time is given by the corresponding rate of change of these 3 components of the

vector along these 3 reactions. But now we want to be moved generally.

Suppose now this coordinate system is rotating in certain direction at an angular velocity

omega,  around this  axis.  How is  this  time  going  to  look like  with  respect  to  these

coordinates little x 1 which are rotating?
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Now, that is the exercise we are going to do now. 

So, how does the motion of a vector appear with respect to a rotating coordinate system?

So, it is a type of relative velocity or relative motion. So, let us I have got the coordinate

system again x y and z and this is the vector pointing in certain direction.

So, it is a question of relative motion. If I sit on this coordinate system, the vector itself

will  appear  to  rotate.  That  is  understandable;  that  with  respect  to  the  vector  this

coordination  is  rotating  means  with  respect  to  the  coordinate  system.  The  vector  is

rotating  is  matter  of  a  rotation  of  the vector  how that  appears  with respect  to  static

coordination system.
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Let us say that this is the direction of the angular velocity omega, and from certain origin

this vector R is pointing. So, as I said here earlier the rotation of the coordinate system is

as good as imagining that the vector R is rotating around the direction of the angular

velocity omega. Suppose at the time T this was here, and then is rotating in this way; so

after some time this will appear here, but this vector is different from this vector because

the direction has changed, but magnitude has not change is rotating in this way. So, the

change here is; I call it dR; this is actually equal to r plus dR; what will be the magnitude

of this dR?

So, if this angle is theta, then I draw a normal here this normal there. So, at time dt the

change in the amplitude of this is dR. So, for this dR by dt. So, from this angle which

will be r cos theta and this magnitude is r sin theta. So, if the angular velocity is omega,

then at with time dt this angle hold here, this angle B alpha will be this be this is actually

equal to d alpha. This is the angular velocity at time dt this much angle is found here.

So, this will be given by this is the radius and this is the angle. So, will be given by r sin

theta d alpha. So, this is therefore, is equal to dR by dt is r sin theta d alpha by dt which

is equal to r sin theta omega. That is straight forward. So, this rate of change of this is

equal to r sin theta times the angular velocity.

So, these give the magnitude of this. Now we have to or. So, worry about the direction of

that. So, this direction dR this incremental vector is in the direction which is normal to r



in every instant of time, and also normal to this direction of angular velocity omega. If I

write that properly using the vector algebra, this will look like dR by dt is equal to this.

This gives the correct magnitude as well as sorry r sin theta omega. So, this gives the

correct magnitude as well as the sense of this direction.

Now, coming back to the our rotating coordinate system, when this rotates I have another

set of coordinate, let us call it x y and z is they rotating with respect to certain axis with

angular velocity vector omega. Then this little each of them will have it is own i j and k.

Where these little vectors they keep on changing with time. So, I can therefore, write

using this equation di by dt is R vector is replaced by this individual vector i similarly,

and k.

So, once again we should not get confused with the respect to the fixed coordinate x y

and z i have it is own little i j and k which is fixed with respect to the laboratory phase

coordinate, let us say. But the other coordinate capital x and y and z they are rotating in

certain direction with angular velocity omega, then the unit vector associated with these

rotating coordinate system with these i  and j and k and they have a this  set  of time

dependence. So now, coming back here now we can now make it more general by saying

that this i j and k also depends on time in this fashion, because with the rotation with

respect to this certain direction omega, then I can write in more general way that; f is i

times f x j time f y k times f z, but now this time that I have got with respect to the fixed

coordinate x y and z.

Now if I and j k they are also changing because with rotation that I have to use another

term here, which is the rate of change of this with respect to time.



(Refer Slide Time: 17:16)

So, this will be f of x di by dt plus f of y d j by dt and plus f of z d k by dt. So, this gives

the complete time derivative where coordinate system is also rotating.

Now, I have already got this relationship this in terms of the angular velocity  vector

omega. So, if I write this here this will look like i d f x by dt plus here f x times, this is

omega cross i. Now we can collect all the terms that involve this omega.

(Refer Slide Time: 19:11)

This gives, k d f z by dt plus the omega term i f x j f y k f z. See how all these things

have come together, and this is nothing but this vector itself. So, you can write this equal



to i d f x by dt j d f y by dt k d f z by dt plus omega cross f. These 3 terms written as dell

f by dell T this is omega cross f. So, this the same as d f by dt.

So, this is the equation we are trying to arrive at. What is the significance of this? This

says that this part is the time derivative with respect to the rotating coordinates which are

rotating around this axis with a angular velocity omega. So, here this i j k the unit vectors

are rotating. So, with respect to those rotating unit vectors this is the time derivative. And

this is with respect to the space fixed unit vector i j k. So, it also shows that, if this term

is 0, then with respect to the rotating coordinate system the 3 component of this vector f

do not change. So, this is the equation will find very useful. So, another way to look at it

is that; if I want to know the time derivative with respect to a rotating coordinate system,

that derivative plus this vector product together gives the time derivative with respect to

the space fixed coordinate.

From here now, will try to see how the magnetization can be written in terms of rotating

coordinate system, and it is time dependence can be derived in exactly say analogous

fashion. 

(Refer Slide Time: 22:58)

This  is  the  differential  equation  relating  the  rate  of  change  of  magnetization  in  the

presence of magnetic field here. So, you see from these I can straight away write if the in

a coordinate system which is rotating with an angular velocity omega this will look like

this  there  is  the  extra  term that  come  from here  because  the  rotation  of  coordinate



system.  So,  this  is  the  time  independence  of  the  magnetization  in  the  rotating

coordination system, and I get the extra term here and that is the way it is going to be.

So,  what  does  it  mean?  This  means  minus  omega  cross  m  which  is  this  gives  me

compare now these equation with this equation. This is written in terms of the laboratory

coordinate system and this is in terms of a coordinate system which is rotating in an

arbitrary direction with an angular velocity omega. See they look essentially very, very

similar. Except that this effective B becomes different in the rotating coordinate system

different from the magnetic field B that is present here.

(Refer Slide Time: 25:53)

So, when the coordinate system rotates with an angular velocity omega, the effective

magnetic field becomes this. So, and then I can use the essentials let the same type of

time dependence as in the static coordinate system.

So, with these now is a how easy to visualize the motion of this  magnetization in a

magnetic field. So, when the (Refer Time: 26:27) B was B 0 k, and even now find out the

time dependence of the magnetization. If I choose a coordinate system, which is rotating

around the z axis, with an angular velocity this then what happens that, if I choose the

frequency such a way that B effective becomes 0, then my dM by dt becomes exactly 0.

So, that means, that in that coordinate system which is rotating around the z direction

with the frequency omega, such that this is 0. Or in other words my this implies that



omega  is  actually  equal  to  gamma  B 0,  then  in  that  rotating  coordinate  system the

magnetization does not change. So, it appears static.

So, what is the consequence that? If the magnetization appears static in a coordinate

system  which  is  rotating  in  a  frequency  omega  around  the  z  axis,  then  in  a  static

coordinate  system, the magnetization  rotates  with a  same frequency. See how nicely

come  to  the  conclusion  which  we  do  earlier  is  that  magnetization  increases  in  the

laboratory  coordinate  system with  this  frequency  and  when  we  look  at  the  rotating

coordinate  system rotating  with  this  frequency. The magnetization  appears  static  the

fixture is  the same;  s these conserve and comes;  so easily  by choosing a coordinate

system which rotates in this particular fashion. So, this is the advantage of using rotating

coordinate system. We can better in sight and expressions also look somewhat simpler. 

So, how will the Bloch equation look like in the rotating coordinate system? Now what

should we in a coordinate system we should choose here. Here we choose the frequency

which is the normal frequency, but for this situation where this B 1 is the micro magnetic

feild which is rotating in the x y plane in this fashion. I choose a coordinate system

which is rotating in the same angular frequency as this one along the z direction, that is it

will may having an angular frequency omega and direction is the z direction. Then what

will happen to the B 1 field, in the laboratory coordinate system the magnetic field is

rotating in this way, but in the coordinate system now I have got this which is rotating in

the same frequency as this one, then this B 1 field will appear static no?

So, at time T is equal to 0, if the B 1 field is applied along this x direction, and the

coordination start rotating at time T equal to 0 from the x direction, then in the rotating

coordinate system the B 1 will always be along the x direction there will not be any

component for that. So, you can therefore, write it very easily from this knowledge. That

with when a coordination system rotates, I change the B by this and here in particular the

B 1 also has only the one component it is the x and y component.

So, here let us I modify right here so that the difference becomes easy to visualize, this

will become B 0 minus omega by gamma e M y. So, this is the change of B 0 by value

that is the way we come we got the answer earlier, now this is the y component of the

magnetization in the laboratory consistent, but in the rotating coordinate system this is



absent. So, this becomes 0 minus now I should call it now dM x by dt this is the capital

dM x by dt.

(Refer Slide Time: 31:47)

These  things  indicate  that  this  is  the  rotating  coordinate  system.  Similarly,  for  y

component dM y by dt will be B 0 will be replaced by this one.

(Refer Slide Time: 32:03)

I should have change this also, this will be capital y in a rotating coordinate system. This

is the B 1 magnetic field, which is always present in the x direction. This will be present

here this  a mistake here. Sorry, T 2 and finally, this is capital  z. This is again the y



component of the rotating magnetic field, which is not present in this coordinate system

this  is  0.  This  will  be  T 1.  See  how  easily  we  can  now  transform  this  laboratory

coordinate system that magnetization evolves to a rotating coordinate system. So, I have

got a slide here.

(Refer Slide Time: 33:42)

So, that capital x y and z are the rotating coordinate system. Then are the total magnetic

field appears only as a x component of the (Refer Time: 33:52) and the Zeeman field is

around the y, I am sorry in the z direction, and then this time dependence of the x y and z

direction.
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Now, will try to get the steady state solution of the Bloch equation; when the (Refer

Time: 34:20) experiment is done all the time dependence have reached a steady state

value, and this spectrum is recorded as a function of either frequency or magnetic field,

we get the steady state value of the magnetization that detect the spectrometer.

We can solve for the steady state value of the magnetization.  From this 3-differential

equation by setting this time derivative to be 0 dM x by dt is 0, dM y by dt equal to 0 dM

z by dt equal to 0.
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Then we do some algebra and the solution is given in this fashion is called the steady

state solution of Bloch equation in the rotating coordinate system.

(Refer Slide Time: 35:02)

Here we made a small substitution gamma e B 0 is defined to be omega 0 and delta

omega  omega  0  minus  omega.  This  omega  is  the  angular  frequency  of  the  micro

magnetic field, and this is the frequency correspondent to the Zeeman field or larmor

frequency. That is why looks like.

So now EPR spectrometer can be set to detect the Mx component of the magnetization or

M y component of the magnetization. Usually we look at the M y component. Which is

called  the  outer  phase  component  because  outer  phase  with  respect  to  this  rotating

magnetic field which is present there which applied in the x direction. So, we are looking

at the y one which is 90 degree out of phase, but one can detect the x component also

which is the in-phase component. Now how they will differ the appearance is given by

this magnetization, as a function of now the frequency of the micro magnetic field, that is

this omega.
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So,  if  I  plot  this,  that  will  give  the  EPR line  shape  as  I  said  that  usually  the  M y

component is rejected. So, EPR line shape will be given by the shape of this.

So, we plot now M y as a function of omega. What we are plotting is this function in a

that is the M y in the rotating coordinate system. This will look like this where this peak

corresponds to omega 0. So, this is called the absorption profile or absorption spectrum.

Similarly,  if  we  plot  the  Mx component;  this  will  look  like  this.  This  is  called  the

dispersion spectrum. Usually this detected in the EPR spectrum. 
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M y is proportional to If here if we neglect this term gamma e square B 1 square T 1 T 2

that is neglected that is very, very smaller than one then it looks like this. Now this is

exactly similar to the form y equal to 1 by 1 plus x square, which is the Lorentzian line

shape. So, the EPR of those spectrums will therefore, appear Lorentzian when this term

is neglected.

Here say x is equal to 1, the value of y becomes half. The same way here when omega 0

minus omega T 2 is equal to 1, then the signal height becomes half of that. So, here this

will be half of that when these value is 1 by T 2. Similarly, here also 1 by T 2 or in other

words this total this one (Refer Time: 39:45) delta omega half corresponds to the half,

intensity of this one or full with and half maxima full with at half maxima corresponds to

delta omega half this gives 2 by T 2.

So, in this spectrum are recruited as function of frequency we can straight away get the

spin spin relaxation time. From this relationship the second consequence of this Bloch

equation here see the intensity of M y is proportional to B 1, which is the measure of the

micro  magnetic  field.  When  B  1  increases  the  signal  height  will  also  increase  is

proportional to B 1, where micro power is p then p is proportional to B 1 square. So,

when the EPR signal is recorded at various setting of micro power, the intensity will

change as square root of power. All these are true when we have neglected this factor,

this one. But as you keep on increase in the micro power this becomes more and more

significant and is possible that this may not be neglected. Then the line shape will starts

showing distortion. So, we call this signal when this we can appreciable then this appears

here as gamma square T 1 T 2. So, the signal will now try to become smaller and smaller,

where this is becoming appreciable. We have got B 1 here, for then as this because larger

than this, similarly start.

Therefore initially keep going up and then because of this will be start going down. So,

we say that system is undergoing partial saturation. That is relaxation process is not able

to maintain the population difference while. So, signal height does down, but this itself

could be used as a tool to measure. The spin lattice relaxation time, how? So, let us call

this factor. 
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So, if I plot this signal height now as a function of various settings of B 1, as I said

initially will go up and then it will start coming down because of this one. So, by plotting

in (Refer Time: 42:42) function of micro power, I can get an idea of this value saturation

factor. So, this is proportional to B 1 square. So, from that experiment I get idea of this

product now. And then I can get T 1 by knowing that from the unsaturated condition,

when the line shape is strictly Lorentzian and (Refer Time: 43:08) as small I can get T 2,

and partial saturation is achieved again a T 1 and T 2 from this I can find out T 1 also. 
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This technique can measure in that spin as relaxation time is called continuous wave

saturation technique. Now to measure the T 1 and T 2 from this line shape analysis, one

needs to keep in mind that the line shape should follow Lorentzian there; mean there

should not be any unnecessary high-power line. There each high-power line must strictly

cross from one transition there is no residual line which are hitting here. In that case one

will get a wrong value of T 2, and if you get wrong value of T 2 you will get of course,

wrong value of T 1 because this is obtained from the product of T 1 and T 2.

And also, one has to have very accurate measurement of the micro magnetic field B 1,

and that is not very easy to know analyse one (Refer Time: 44:34) careful estimate of B

1. We can measure the micro power very accurately, but how is that micro power (Refer

Time: 44:40) standing of inside the cavity? And how the B 1 field is experienced by the

sample? That needs very, very careful measurement. That is not a very easy task. Never

the least this way of measuring T 1 and T 2 are possible, if one takes care of this things

now.

Before concluding a little small note of a importance; that we do not do the experiment

in terms of micro frequency. We do the experiment at least micro frequency, but vary the

magnetic field. So, we modify this Bloch equation, which are here in terms of least micro

frequency of vary the magnetic field. So, that is shown here. So, steady state solution of

Bloch equation in the rotating coordinate system in terms of variable magnetic field here

looks they are quite equivalent of course.

Now to conclude that we have seen how the introduction of relaxation by Bloch in the

time dependent magnetization gives rise to the line shape. And explains a host of things

like saturation B i B r, how that T 1 and 2 are (Refer Time: 46:04) built into the line

shape. And one can learn from and one can measure those from the line shape analysis.

With this we come to an end to this lecture.


