
Principles and Applications of Electron Paramagnetic Resonance Spectroscopy
Prof. Ranjan Das

Department of Chemical Sciences
Tata Institute of Fundamental Research, Mumbai

Lecture - 24
Spin Relaxation and Bloch Equations - 1

Hello. I have said many times in these lectures that if a spectrum appears in the form of a

lorentzian line shape, but I have never explained why that should be. So, today we are

going to learn and see how spin relaxation processes actually decide the line shape. So,

before we start let us look at the concept of a magnetization today little more carefully

earlier. I have used the term magnetization without defining it very rigorously. So, for

that let us consider not a single spin, but a collection of spin something like Avogadro

number of spins which are typically used in an experiment. 

So, as this many spins are put in a magnetic field they will point along various directions

given  by  their  allowed  angular  momentum  and  allowed  values  of  the  magnetic

movements so.

(Refer Slide Time: 01:33)

We know that mu is a magnetic movement for an electron this is given as minus g e beta

e S and. So, S can take various components in a magnetic field. So, M S value here given

minus 8 to plus S changing in units of 1.



So, for a spin half system for example, electron you have a larger amount of spins then

M S takes plus half or minus half and we know by now that in a magnetic field which is

pointing along let us say this is the B magnetic field, pointing on a z direction, many of

this little spins will point in around the positive z direction and also many of them will

point along the negative z directions this with x y and z. So, it is a sum of all these will

give rise to term net magnetic movement of all these particles.

So, magnetization is defined as total  magnetic movement divide by the volume, now

total magnetic movement of course, has to be obtained by adding all these individual

magnetic movement of the individual particles.

Now, you see that if these 2 orientations for this one are equally populated, then there

will be as many number of spins which are going up and as many number of spin going

down will all equal. So, net magnetic moment will be 0 and net magnetization also be 0

and that is true for not just S equal to half I have S of some other value then I can have

these set of next energy level staring from M is equal to minus S to M is equal to plus s.

So, if all the levels are equally populated by the various spins then if I sum over all the

magnetic moments here I will get the magnetized total magnetic moment average will be

precisely 0.

But in thermal equilibrium when this spins are distributed among various energy levels

the distribution is governed by Boltzmann distribution, now we all know that electrons

are spin of particles.  So,  they are supposed to follow Fermi Dirac statistics  they are

called fermions that is absolutely correct, but the type of system we have here that these

particles which really do not interact very much they behave almost like independent

particles for such weakly interacting particles or non-interacting particles.



(Refer Slide Time: 05:33)

The Boltzmann distribution works equally well. So, we will use this distribution to find

out how this  various particles will  be distributed among the various M S values is a

lower level to be more populated than the higher level this will be little bit less it will be

still less this will be still less this will be the least populated 1. So, now, if I add all the

magnetic moment then net result is not going to be 0 therefore, the system will have a net

magnetization.

So, each of this M S values will have it is own energy as I said with that that is given by

g e beta e if B is 0 is the magnetic field which is pointing along the z direction then g e

beta e is 0 S z is the energy corresponding to M z is the energy corresponding to the

energy level given by the corresponding M z values. So, this should be M z here and M z

there.



(Refer Slide Time: 07:05)

So, we know now that for Boltzmann distribution the number of particles is n 1 by n 2

follow this type of distribution, where delta is the energy difference between the level

which is n 1 particle and this is n 2 for, here the various energy levels are given by this

set of expression and M z varies from 1 level to the other. 

(Refer Slide Time: 08:04)

So, we can calculate the fraction of particle that this various levels will have is given by,

Let us call is spin population in the M S or I will call it M z level is given by this is

understandable then this is the sum of all the possibilities. So, that is a normalisation



factor. So, this ratio gives the fraction of population at a level which is characterized by

the value of M z. So, if we take sum of all M z this is the total likelihood.

So, now if the number of particles in unit volume equal to N, then I find out how many

of this  n are  distributed  in  various energy levels  here and each of them will  have a

magnetic moment given by expression of this kind. So, I get the average value of the

magnetization coming out for this N particles and say n is the number particles in unit

volume that average magnetization will essentially give rise to the magnetic moment.

(Refer Slide Time: 10:30)

Give rise to the magnetization M is therefore, given by this n times M z equal to minus S

to plus S e to the power e 0 is missing here. So, that is it. So, if I can simplify this thing

and get some sort of descent looking expression that will be the magnetization, how do I

make it decent looking. 

Here the energy gap between these various steps are of the order of this g e beta B 0 type

of thing and for typical magnetic field of B 0 let us say worth 3000 gauss and g e is

typically 2 this factor let this this factor turns out to be less than 10 to the power minus 2.

So, of course, an at temperature T is equal to some 300 Kelvin room temperature. So,

this is the typically condition we employ in the according to the spectra. So, here this

ratio is very small. So, the exponential here can be expanded and we can keep only the

first term that is exponential x 1 plus x plus we can keep only this 2 term here.



Then let us see how that expression simplifies. So, that the magnetization M.
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Becomes and the denominator is M z equal to M minus S to plus S 1 minus g e beta e M

z by K T, then here where this summation is carried over these term here you see that this

will take all the values from minus S to plus S in interval of 1. So, this sum will be 0 in

the same way when this is (Refer Time: 15:18) done over this term then again M z takes

all the value from minus S to plus S the sum will be exactly 0. So, by this number 1 will

be added 2 S plus 1 times. So, this is equal to M z square I forgot this square comes from

this  region  that  they  already  there  is  one  here  and  then  other  one  comes  from the

expression here. So, multiply these 2. So, that this will be rise to square of that this will

be 2 S plus 1. 



(Refer Slide Time: 16:36)

So, this is N g e beta e square B 0 if I have forgot10 K T, here this 1. Now here if now S

is a whole number let us say 1 2 3 then M z will take value 0 1 plus minus 1 plus minus 2

up to some number plus minus S these are the possible M S values. So, when I take the

square of that for both plus and minus the values are same. So, they will appear in pairs

and 0 of course, does not contribute this. So, this is a essentially this summation means

that I take the sum of integers of this kind 1 square plus 2 square plus 3 square up to S

square and this is known summation is known this is a summation of this, but since this

appears in pairs this summation will be 2 times I do not need any more this 1.
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So, what I get from here these 2 cancels well and this gives 3. So, this gives the (Refer

Time: 19:19) extension of magnetization is equal to this is S into S plus one by 3 K T.

So, this is the expression of magnetisation.

(Refer Slide Time: 19:25)

Here in the derivation I have taken the value of S to be a whole integer that is how we

could use this expression here and then it simplifies to this, now it is possible that S can

be half integer also. So, S equal to for example, 3 by 2 then M z where I should call M S

I suppose to M S here the component of the magnetic moment vector here also. So, M S

will be Minus 3 by 2 minus half plus half plus 3 by 2 where it appears in pairs of these

values plus 3 by 2 plus minus half.
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So, here this expression cannot be used exactly as it is. So, one has to change it to this

half integral values then do the summation. So, I leave it to you as an exercise and see

that  you  indeed  can  do  that  just  cleverly  manipulate  this  summation  here  and  then

everything will be very similar, because these M z square appear there. So, all the values

will  appear pair and same. So, you leave it  to exercise and see how you can do the

summation here, now it turns out that even if the S is half integer this is still valid same

expression  is  valid  there.  So,  this  is  true  for  all  possible  values  of  the  spin  angular

momentum quantum number.

So, we see now that  the moment  the numbers of spins are kept in magnetic  field it

develops a magnetization when kept in a magnetic field B 0 there and of course, now we

know this because all the levels are not equally populated.  So, there is a term called

susceptibility or magnetic susceptibility which is related to magnetization in this fashion

called static susceptibility when we kept a magnetic field B 0 and let us say I (Refer

Time:  22:52)  magnetization  this  kind  then  if  you  compare  these  with  these  static

susceptibility is nothing, but this N this you should be able to recognize this is nothing,

but the curie law the magnetic susceptibility and it is temperature dependence.

So, if the external magnetic field is follow the z direction the net this magnetization that

we have calculated this will also therefore,  point along this z direction.  So, if I have

another colour this is the magnetization. So, at equilibrium therefore, this magnetization



points along the direction of the magnetic field now if it. So, happens that something is

done  to  the  system  and  we  disturb  the  orientation  of  the  spins  such  way  that  this

magnetization does not point. Towards the direction and points some other direction in

other  words  what  I  am  trying  to  say  is  that  see  at  thermal  equilibrium  these

magnetization which is a considered a vector quantity because it is a direction and also

magnitude ahs only the z component it has no x or y component. So, at equilibrium there

is no x or y component, but is possible that we can disturb the spin system such a way

that this magnetization can have x and y component also this M.

(Refer Slide Time: 24:57)

Now, magnetization vector has this component.

So, once again at thermal equilibrium M z is this is equal to 0 this also equal to 0 and this

takes a maximum value which I have derived here,  now I will call  it  as equilibrium

magnetization, I call it M equilibrium, how does one visualise this here again see this

individual spins are pointing in all possible directions along the scone here. So, if I take

the projections on the x y plane they will have all sorts of orientation here there will not

be any preferred orientation of this.

So, naturally sum of this is going to be 0 for both x and y component. So, any spin

distribution which changes this magnetization from the equilibrium value to some other

value can in general produce. Now therefore, this and this and a value which is different



from the equilibrium value so here the spin relaxation process is going to restore this

population to the thermal distribution here.

(Refer Slide Time: 26:44)

This going to restore the thermal distribution or the Boltzmann distribution that we saw

earlier and that Boltzmann distribution gave rise to this equilibrium magnetization for the

z component no magnetization for this and this. So, the magnetization which is if we

write  a this  way the 3 component  0 0 M equilibrium and if  I  what  non equilibrium

magnetization let us say M x not equal to 0. So, this relaxation process which are there

they will try to bring this to this this is the job of the spin relaxation processes.

Now, here the difference between these changes of magnetization from this change of

magnetization here is quite significant see the change of M z magnetization involves

skipping of spin from one direction to other direction and that needs energy that causes it

is some transition to take place. 

So, either from here to there or there to here so that energy has to be exchanged with the

surrounding and the surrounding must give when spin flips to express in this direction or

energy  must  take  away  the  energy  when  it  goes  in  the  other  direction  should  that

involves  exchange  of  energy  that  is  for  the  change  of  M  z  component  of  the

magnetization, but for M x and M y is to bring back these set of random distribution of

the spins in the x y plane all is necessary is that this various orientation arranged among

themselves. So, that does not need any exchange of energy in the surrounding. So, these



2 processes do that just rearranging the all the spin orientation such a way that net M x

and M y common0. So, we therefore, characterize them by 2 different terminology and

give different time constant for their processes.

(Refer Slide Time: 30:11)

The time constant for this processes are given by certain time constant I call them define

them in a moment, but importantly till it is blocked you propose that these restoration of

this magnetization from the non-equilibrium value to equilibrium value this process is a

first order process. 

So, which looks like this similar and d M z by D T is equal to. So, these are all first order

chemical kinematic types of expression here that the time constant for this process is

given by this T 2 for this and this and T 1 for this. So, reason for these 2 being different

from  this  is  I  already  mentioned  that  this  involves  energy  exchange  between  the

surroundings. So, the processes or the mechanisms which makes this  process to take

place suppose to be quite they have different from the mechanisms which makes these

process to occur naturally they are time constant in order to be same.

We call this process transverse relaxation time and this is called longitudinal relaxation

time also this is called spin spin relaxation time and this is similarly called spin lattice

relaxation time the meaning is cleared that energy exchange between the spin system and

the surrounding is  involved lattice  is  a  general  term to designate  the surrounding or

anything that is other than the spin system.



We have seen earlier that the time evolution of a magnetic moment in a magnetic field

follows this set of relation.
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Where we have this M was the magnetic moment of a particle or subsystem and here we

are using the same letter M to designate the magnetization because we are dealing with

the  collection  of  particles,  now since  each of  this  little  spin  contributes  to  the  total

magnetization this exactly a similar relation holds good for the magnetization also. 

So, where this is the magnetization I expect that they should not have any confusion in

going to here to there we are reaching earlier this equation to describe the time evolution

of a magnetic moment in a magnetic field, now same exactly similar equation is used to

describe the time evolution of a magnetization kept in a magnetic field. So, here look at

this slide here.
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This given here so when the magnetic field B is along the z direction you know one can

expand this term and we get 3 equations of this kind d M x by d T is minus gamma e B 0

M y d M y by d T is plus gamma e we to have b 0 M x and d M z by d T is 0 that is M z

component does not change.

So, here of course, it shows the simply the evolution of the magnetization in a magnetic

field and we know that this is nothing, but the precision on motion of the magnetization,

now to this  we add this  relaxation processes then the equation will  look different  of

course, here.
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All I have done is add these 3 terms here to the corresponding 3 terms that this equation

gives. So, that is it. So, here this shows the evolution of the magnetization vector M x M

y M z component of them in this fashion relaxation terms are included here, but in the

pair experiment along with this B 0 we also apply a an oscillating magnetic field in the x

y plane to cause the transition. So, this oscillating magnetic field rotates in the x y plane

with a frequency omega. So, how do I show that?
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So, this is my x y. So, this is b one is the oscillating magnetic field it starts at time T

equal to 0 and on the x direction and starts rotating in the x y plane along the z direction

at an angular frequency omega. So, after time T the angle that would form here we let us

call theta. So, theta will be equal to omega T. So, at this time x component of this is

given by this and y component is given by this. So, here therefore, that B 1 cos omega T

I B 1 sin omega T j can be thought of as the B 1 vector, this is the one which is applied

along the x y plane and it is moving around the z axis with an angle w T omega this is

precisely the type of vector expression this will have.

So, in this case the magnetization sees 2 fields one is due to this other is due to this one

which is appearing along the z direction. So, that total field B seen by the magnetization

is  given  by therefore,  I  cos  omega  T this  is  x  component  B 1  sin  omega  T is  a  y

component k B 0 this  is the z component.  So, this is the total  magnetic field that is

experienced by the magnetization.

So, again I can include that in the equation here and then find out the time dependence of

this in the presence of the oscillating magnetic field and that is done in this slide.
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So, the x y z are the laboratory coordinate and this total magnetic field in the laboratory

coordinates is given by this and that given when this expression is inserted here to get the

time dependence of the M x M y M z component of the magnetization. So, will try to

solve it using some special technique at this stage let us summarise what we have done



we have taken a collection  of spins and then when the it  is  thermal  equilibrium the

different energy levels have different number of spins. So, using that information we

collected the static magnetization or equilibrium magnetization which appears here then

we introduced this Bloch’s idea of the first order chemical kinematics type of term which

can  restore  the  non-equilibrium  magnetization  to  equilibrium  magnetization  and

introduce this 2 different time constant for that and finally, we got this time dependence

of the magnetization in the presence of all the magnetic fields that the magnetization

sees. 

So,  these  equations  are  called  the  Bloch  equation  or  the  time  dependence  of

magnetization this is a very famous in magnetic resonance studies. With these we stop

this lecture and will continue our discuss in the next one.


