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Lecture - 22
Anisotropic Interactions in ERP Spectroscopy

Today, we are going to learn how E P R spectroscopy can enable has to study Anisotropic

interactions, that is this today’s topic is anisotropic interactions and E P R.
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What  is  Anisotropic  interactions?  Anisotropic  is  something  which  makes  that  some

property  depends  on  the  direction,  when  there  many  properties  that  depends  on  the

direction. One very familiar example is, the way some substance behaves to a force that

we apply from outside.

(Refer Slide Time: 01:13)

Here is a simple example; we have this ruler, I will apply some force on this and try to

bend it.

Now, if I apply force this way, see how easy it is to bend it, but if I try to apply force in

this  fashion then it  is  very difficult.  See in other words this  is an object,  the way it

response to my force depends on, in which direction I am applying the force. So, this

response of this object is an anisotropic in a similar manner, the beams on the sealing is

given this set of side. So, that is this side is wider and this side is thinner and the load is

carried along this direction.

So, the example that I gave on the ruler is essentially applicable here also. The way this

beam response to the stress is not same in all directions, in magnetic resonance many

phenomenon or anisotropic, we have not considered them. So far, all we have assumed is

that electron Zeeman interaction for example, is isotropic and though wave we wrote is

that Hamiltonian was written as g e beta e this fashion. So, this ways consider scalar

quantity, we also considered the isotropic hyperfine spitting constant which is written as

isotropic is written as.



So, a times, I dot S this is also a pure number, but we did mention that electron nuclear.

Dipolar interaction is a directional dependent interaction, which we have neglected. So,

far we will see those things here and then how far of this thing can we applicable or

needs to be modified at the outside, we should keep in mind that a paramagnetic spices

which is underground going. So, the rapid tumbling in a solution, for example, then it is

experiences all possible orientations very quickly.

So, what property will measure for this sort of system is an average property. So, all the

directional dependencies will not be seen in the experiment except to certain extent the

average value of this direction on the dependent property will be seen there. So, 2 acts

get the true directional dependent properties we must stop this motion as far as possible.

So, 1 into 2 is to steady the solid state system or in powder form where the tumbling

motions are almost gone or have a solution, but freeze it to a very low temperature. So,

that  it  is  a  frozen  solution  sample  and again  the  tumbling  motions  are  substantially

stopped.

(Refer Slide Time: 04:51)

We have seen many times earlier that angular momentum of an electron can come from

either spin motion or orbital motion and both orbital motion and spin motion can give

raise to the respective magnetic moment in magnetic moment for these 2 motions are

written in this fashion.



(Refer Slide Time: 05:12)

This  is  the  magnetic  moment;  due  to  spin  motion  g  e  beta  e  is  this  spin  angular

momentum, where g e is  really  2.0023 and something like this are similar  to orbital

motion.  This  could  exactly  similar  fashion;  we write  g  of  l  is  1.  So,  here  both  the

equations says that this vector and this vector are parallel to each other.

Similarly, this and this are also parallel to each other. Now, if paramagnetic species has

both this angular momentum.

(Refer Slide Time: 16:15)



Then they can combine together according to the quantum molecular rules of addition

angular momentum. Let us say this J is the total angular momentum made up of this L

plus S,  then this  will  also produce sudden net  magnetic  moment and I  can write  by

adding this, they something like mu of J could be written as. Now here by analogy of

these 2 equations,  I  am tempted  to  write  that  something like  let  us say this  angular

momentum and some sort of g factor, let us call it g of J and this. This is written strictly

on the basis of this similarity, that S gives mu s they are parallel to each other L gives mu

L again parallel to each other. So, this equations is fine, it is addition of these 2, but can I

write and expression of this kind that mu J, that is magnetic moment arising out of the

total angular momentum is something, some constant. Here, this gives the power of the

constant between these and the these possible. Now, if this is true of course, then the

these and these are going to be parallel and we are going to see a moment that this net

magnetic moment does not become parallel to the net angular momentum.

Let us see how that is possible. So, using this one let us say, I have got, this is let us take

this one first, that is L vector and this gives the angular momentum of this magnitude and

corresponding  magnetic  moment,  which  points  in  opposite  direction,  because  of  the

negative sign gl is equal to 1. So, let us say, this is my mu of the to L, then I have the

spin angular momentum. Let us say, this is the magnitude of that and the direction and

this angle is such that these two can be added according to the loss of addition of angular

momentum given by quantum magnetics.

Now, the corresponding magnitude moment due to s will be twice the size of this one,

because this is value of this is 2. So, this is mu of S, the net of this and this is given by

this addition rule of vectors. So, this gives the vector J, similarly the net of these two an

magnitude moment is given by this addition, this is the mu of J. Now, it has mu has

formed here that, because this is twice, this one, these vector cannot be parallel to this

one therefore, I cannot write equation of this kind, there is I cannot have a some g factor,

which gives a magnetic moment associated with the net angular momentum. This cannot

be a pure number that is not possible. So, what is the remedy? How do I proceed that?

This is not possible, we can do it two ways; we can use this total angular momentum

expression, the way we have written here and the corresponding magnitude moment. So,

now g L is 1. So, let us write to 1. Now, we do not have write that a g of s and with this I



can  write  the  introduction  of  this  magnetic  one  moment  in  a  magnetic  field  in  this

fashion.

Now, this  is  where  in  earlier  equal  to  2,  2.0023.  Let  us  write  2  approve,  which  is

approximately quite acceptable. This is the way one can write them Hamiltonian, which

is fine. Another way of doing, it is to say that, because is cannot be parallel to each other,

I cannot use the pure number.

(Refer Slide Time: 11:41)

So, how about using a 3 by 3 matrix, here mu of J is something I write in this fashion,

where this is 3 by 3 matrix. Let us call it g x x, then this and this need not point to the

same direction. So, both are acceptable only the approach is different. Here, the approach

is that, we just treat this interaction by assuming that the interaction could be written as

using this type of g matrix, this could replaced at this one. So, here we treat this S to be

some sort of effective spin angular momentum and the interaction can be written in the

same fashion that is we do not express, will be think of the contribution of orbital angular

momentum. The effect of this is to make these two non-linear. So, that is taken care of by

changing g from a pure scalar  number to a 3 by 3 matrix  and these therefore,  is  to

considered to be an effective spin angular momentum and that gives a same interaction,

which is given by this one. We will  take this  approach, because it  is sort of easy to

visualise what is happening, but nevertheless both are equivalent approach there.



So, here when a define this of course, you need to define a coordinate system. So, this

could be a some coordinate system to start with where the element paramagnetic which

is kept, here we say this is the x y and z. Now, in this product we have to keep in mind

how these three items are multiplied.

(Refer Slide Time: 14:36)

This is shown here. So, I said earlier that mu is written as the product of this 3 by 3

matrix  with  this  effective, a  spin  angular  momentum  given  raise  to  this  sort  of

multiplication. So, here B is the magnetic field written as a grow vector, because that is

why  the  multiplication  has  to  be  carried  out  for  compatibility  of  the  rules, of

compatibility with the rules of matrix multiplication.

Now, with this one a c taken to be the effective spin;, in a magnetic field this will give

raise to two energy level E 1 and E 2 .



(Refer Slide Time: 15:12)

So, this could be written as energy of this will be g of effective and this will be similarly

plus g of effective. Total energy delta  E is  g of effective beta  e B. So, what it  is  g

effective now? So, once again if we look at it that these two terms together gave some set

of effective magnetic moment, which is interacting with this magnetic field, but we can

look at it differently, also that is

(Refer Slide Time: 16:14)

We look at it as, this is an effective magnetic field, which is interacting with the spin

angular momentum and that is the way, the energy levels can be thought of that. So,



these gives an effective g value for a given value of the magnetic field B here and the

energy level of spirit, both are equivalent, they actually the, how we look at it. So, these

give  the  effective  spin  there  interact  together.  Magnetic  field  here  or  this  gives  the

effective magnetic field, which is interacting with the spin.

Now, with that idea, now if this is the way, it is should be able to get some expression of

this, in terms of these things, total energies square; this is a scalar quantity can be written

as a scal, scalar product of these with itself.

(Refer Slide Time: 17:22)

So, that is done here is delta  E square is product of these with these of course, here to

again the maximums of the multiples and vectors and this matrixes, these have to one has

to take the appropriate transpose of the matrix here, there is done here. So, then why

simplifying the g effective square, with these two constants gives comes out to be this,

here the B x B y B z are the three components of the magnetic field. So, if B is, let us say

I, B x is the three components and magnetics of this is given by these, then one can write

these three components in terms of the direction, cosines of this B with respect to the

external, coordinate system that we had earlier. So, l x l y l z are the direction cosines of

B, in the similarly here.



(Refer Slide Time: 18:51)

So, then B square comes out then this quantity g eff’s effective square is actually, is

these, which is written here, g effective square is the direction cosines of the magnetic

field and square of this g matrix, this square matrix defined by taking the product of

these. Now, if you see these matrix and is the transpose of this matrix. So, no matter

whether  g is  symmetric  or not  these will  always be a symmetric  matrix  that  is  very

important.

(Refer Slide Time: 19:24)



So, then because g square is a symmetric matrix now, we can choose suitable coordinate

system. So, initially I have some, I had some coordinate system, whatever it is in the

laboratory and the experiments done, and this is a paramagnetic centre sitting here and

whether(Refer Time: 19:43) with this x y and z, the g square matrix here was defined.

Now, because it is symmetric matrix, I can have a special coordinate by suitably rotating

this  one.  So,  that  the  g  square  matrix  become  a  diagonal  matrix.  So,  these  special

coordinate call let us X Y and Z are the special coordinates with respect to the molecule.

So, that this becomes diagonal g square matrix diagonal. So, if it is square root of these

three, then I get g xx g yy and g zz, these are called the principle components of the g

matrix. So, here if the magnetic field is now pointing towards either this, if this special

coordinate or the principle access one a X Y and Z.

(Refer Slide Time: 20:31)

Then you see the equations, because very simple, now with the magnetic moment along

that particular direction x, becomes beta e g xx S x, which is what we known always, get

that this type of thing, but then this the important thing, is there, here the magnetic fields

pointing to one particular direction of the molecule, that is a principle axes.

Similarly, for S y and is S z and if the corresponding energy of transition will be the, if

the magnetic field is along the X direction and H nu is beta e g xx B x similar for the

others. See in general, the magnetic moment can be written in terms of this principle



component g xx g yy g zz, in this fashion well X Y and Z are the unit vectors which are

pointing towards this principle axes, this is shown here.

(Refer Slide Time: 21:20)

So, these are the cap principle axes. Let us say B is pointing along this, then effective g

square which is from this expression, there diagonal element appears to be this. So, at

these are the three direction, cosines with of B Y, respect to this principle coordinate. So,

this shows that the interaction depends on directions and depending upon the value of

this g xx g yy and g zz, one can get complicated E P R spectrum as the angle changes the

effective g value changes therefore, the spectrum will also change.

Now, how different these three values are that will tell us about the symmetry.



(Refer Slide Time: 22:15)

So, we have got three principle component, if all three are same then we call this an

Isotropic system or g is Isotropic, this is what we have been using, actually using. So, far

in our previous examples g does not depend on the direction, all the possibility let us say,

two of them are equal third one is not, then we will call this system to have an  Axial

symmetry and if all three are different, then we can say this is a Rhombic symmetry, in

essence no symmetry. So, far is that g values are concern to if get a interactions of this

kind, the molecule has to be kept in a frozen solution or in the crystal.

(Refer Slide Time: 23:50)



So,  write  now  let  us  consider  the  situation  in  crystals.  So,  crystals  have  certain

symmetries see the paramagnetic centre is sitting in this crystal. They will express the

local symmetry, in local symmetry could be cubic symmetry here or it could be Uniaxial,

where there is a axis, one axis of symmetry. So, there is, if it rotate in this fashion, it will

be at  least  three  fold axis of  symmetries,  will  be their  or Rhombic  symmetry. Now,

symmetric axis higher than c 2 here. So, when I said a Rhombic between symmetric is no

symmetric that is not quite correct. This is the crystal, can have c 2 symmetry, but there

is no symmetry axis higher then c 2, if there is higher than c 2, then c 3 or c 4, then it will

be either here or here, probably here this one as c 4 axis of symmetry this as c 4 no

doubt.

(Refer Slide Time: 24:50)

Now, it will also diagonal, if it, now it will have c 3 axis of symmetry. Now, a Cubic

symmetry; a cubic symmetry is essentially, will give raise to this Isotropic g value, these

a various subclasses of, Cubic symmetry is a cube, Cubal when you say ended a cube, all

this a lengths are same, there the way the atoms are placed or it could be Octahedral or it

could be Tetrahedral. These are all subclasses of cubic symmetry and all of them have an

Isotropic g value.



(Refer Slide Time: 25:23)

Now, we take some examples of E P R and C in crystals, in a single crystal all radicals

are oriented in the same way. So, by changing the orientation and the resonance position

of the magnetic field will change for all radicals in the same way, which as you rotate the

crystal all the radical, which are inside, will explain the same magnetic field. Now, here

is an example of a paramagnetic centre trap inside a sodium chloride crystal lattice. Here,

this block or the square is the place, where a chloride atom should have been there, but

that has disappeared to make a vacancy and instead a single electron is residing here.

So, these are some called defect centres or color centres type of names given to this. So,

this is the centre of paramagnetism. So, here this belongs to this Octahedral symmetry.

You can see the four nitrogen and sodium atom. They own on the top or the bottom. So,

here this is purely Octahedral. So, that belongs to this a 3 values to be same and. So, g

value will be isotropic what is the experimental observation that if I take this crystal this

is a crystal and do the E P R experiment as a function of magnetic field.



(Refer Slide Time: 26:47)

So, this will  give us spectrum somewhere,  let  us say here and you keep rotating the

crystal around certain axis. This will not move, will be preside the same place that is

same thing, what I have been to trying to say that g values  Isotropic and it does not

depend  on the  orientation  of  the  crystal  with  respect  to  the  magnetic  field.  So,  this

remains constant. So, this is the place which gives me the value of B 0, then the g value

will be correspond to this one and this is not going to change.

No matter which direction the magnetic field is applied. In contrast, there is another such

vacancy  centre,  here  magnesium oxide  crystal.  Again  this  defective  created  where  a

magnesium atom a disappeared, it was done by (Refer Time: 27:55) this crystal with x

ray now. So, that is magnesium ion, is disappeared and the same time this O 2 minus

oxides were there from one of those, this one electron was knocked out. So, this O 2

minus because O minus,  now in the process the position of this  thing is got slightly

moved from the normal usual position. Here, usual position is the very similar to this

Octahedral symmetry, but because these has gone and such therefore, the little repulsion

between this and this. So, that repulsion push this away from that. So, this therefore, is

no more a cubic symmetry. So, it has a symmetry axis along this direction now.

Now, for  these  the  g  values  dependent  on  the  direction  that  is  if  you do that  same

experiment here and rotate the crystal the position is going to change in certain way and



wherever  you changes,  I  get  a effective g at  that  particular  way understand and that

magnetic field.

(Refer Slide Time: 29:06)

So, once again this is the symmetry axis C 4 axis is here and let us say B is magnetic

field,  is  applied  along  this  direction,  which  makes  an  angle  theta  and  this  is  the

perpendicular of direction. So, here if the crystal is rotated around this C 4 axis then,

because is symmetry axis the interaction is not going to change. So, this will be staying

right here, wherever it is on, does not here the interaction depends on the angle. So, if

these angle is varied in the Y Z plane then the effective g is going to change, that will be

seen as the change of the line position.



(Refer Slide Time: 29:55)

This is the result here. So, you see that angle is varied from 0 to 100 degree they this is

the position of the E P R signal in the magnetic field unit we starts with 3 2 3 3.1 gauss

and as an angle is change this becomes smaller and smaller and somewhere at 90, it

reaches minimum, again it goes back here.

So,  far. So,  starts  from here go is  down down down, again  goes  back.  So,  for  each

orientation one can, that determine the g value and this is shown here as the angle is

varied, g changes from 2. 0033 to 2.0386 Now, this is 01180 degree is nothing, but the

magnetic field is pointing along the direction of the symmetry axis. So, we call the g

value to g parallel  value an 90 degree, is this direction so that it  the g perpendicular

value. So, this expression can be feted to an expression of this kind g parallels and g

perpendicular expression and angle is theta. So, that is for axial symmetry.



(Refer Slide Time: 31:12)

Now, for Rhombic symmetry, where all 3 are different, the expression for effective g is

given here, depends on all the three principle component of g and also the angle that the

magnetic field makes with respect to the principle axis. Now, to determine these E P R

spectra are recorded by rotating the crystal successively in X Y Y Z and X Z planes then

for this measurement each of them will give curve of this kind, then the corresponding

elements of this g square matrix, I have got this elements, could be determined from this

measurement and then one can know diagonalize it to get the principle component of the

g matrix, at then outside the angle of the principle component of the g matrix that gives

raise to, we have an Isotropic interaction.



(Refer Slide Time: 32:15)

Now, that is the way one can study the single crystal and find out the corresponding an

Isotropic interactions, but is not always easy to form single crystal. So, these experiments

are difficult in that sense. So, what one does is that one can frees a liquid solution if

paramagnetic sample and then try to see if one can get similar results from studying the

E P R spectrum of a frozen solution or powder for example, if a crystal is not form, one

can do E P R on powder samples, but then main problem is that if powder and frozen

solution  can  magnetic  moment  of  paramagnetic  particles,  will  point  to  all  possible

directions with respect to the external magnetic field. So, we have randomly oriented

spin system.

So,  here  we  need  to  find  out  that  how the  random orientations  are  reflected  in  the

spectrum of the E P R signal when recorded in case a powder for crystal.



(Refer Slide Time: 33:20)

For example; as the orientation changes these magnetic field goes on change for powder

or frozen solution similar, there will be magnetic field direction this is the signal. So, as

the different orientations are available in case of powder. So, this will also certain range

of  allowed  magnetic  field  as  we  have  to  find  out  whether  all  such  magnetic  field

positions are equally likely or there are some selectivity.

(Refer Slide Time: 33:43)



It is very obvious there all orientations equally likely. So, where we are going to see that

is  within  all  over  orientations  equally,  likely  this  all  magnetic  field  position  all  not

equally likely.

So, first let us find out therefore, that how many were magnetic moment will point to

sudden direction here for a, let us say the case of axial symmetric g. So, these are here to

find out how many molecules will point to a this direction given by r theta and phi and r

givens constant, theta changes from theta to d theta here and says the axial symmetric the

g does not depend on the phi. So, for all values of phi so that happens to be this particular

band here. Let us, easy to see that area of this band is 2 pi r square sin theta d theta , the

total surface area as 4 pi r square therefore, the probability of finding a vector, pointing

towards the shaded region, is given by these divided by these which is sin theta d theta

by 2.

Now, So, will. So, when, these vector which a pointing in this direction will give the

same in the neighbourhood of same magnetic field in the E P R spectrum. So, where are

they going to appear? May be they will appear somewhere here. Let us, now if, now this,

if a theta is change now the resonance position is going to change somewhere here. So,

when  we  cover  all  the  possible  orientations,  how this  distributions  are  going  to  be

appearing a different magnetic field region?

(Refer Slide Time: 35:28)



So, that is P theta d theta, which is already found out to be this proportional to some

distribution of intensity as a function of magnetic field B to d B. So, P B is just a, these

divided by this one. So, we have to find out this relationship B is equal to H nu by g beta

e

(Refer Slide Time: 35:53)

Now, we have seen that for axially symmetric g this is the relationship. So, we just do the

algebra that necessary to simplify these. So, B is given by this relation and that, but g

itself is given by this. So, if we, the differentiation the B P happens to be in this fashion.

So,  this  let  us  take  a  closer  look  at  that;  that  means,  all  values  of  magnetic  field

orientations are not allowed. Here, it can range from that is a g paramagnetic value to the

g parallel value. This is the range of allowed B and as the cos theta changes from 0 to 90

degree and for each angle the B is given by this relationship. So, for that angle theta I

find B, that B is a put here and here to, for find out the value of the probability here see

the moment cos theta becomes 0, this would sub.
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So, this goes to very large value for otherwise is smoothly comes, to comes maximum

upto B parallel see of course, this is here, this is going to if it is not very serious these.

So, because this transitions width we have supposed to be 0 for once we have a finite

width then they all. So, the broaden seven these sharp edges are gone. So, this is given

here, the blue has a very small width of transit one gauss, then has width goes bigger and

bigger, say how they become less (Refer Time: 37:15). Now, here the g perpendicular

value  is  here  correspond  to  this  magnetic  field,  an  G  parallely  be  correspond  this

magnetic field. So, we can get the corresponding values from this powder spectrum, as

well  when  practice  we  do  not  get  the  associative  spectrum.  We get  the  derivatives

spectrum. So, we have, can derivative of this one and that is the way this looks like.



(Refer Slide Time: 37:36)

So, here, if you take a derivative of this this, let me go up and come down and here again

that is going to be.

(Refer Slide Time: 37:42)

So, this point is corresponding to with. Here, this point corresponds to this one. So, g val

perpendicular  will  be  corresponding  to  this  magnetic  field  position  and  g  parallel

correspond to this magnetic field position. So, that is the way it is going to be. So, these

are the example for the magnesium oxide vacancy and g perpendicular is here, g parallel

here.



(Refer Slide Time: 38:11)

Now, for Rhombic symmetry, we have to do the same calculation,  but little bit more

complicate instead of shaded area. Now, here we have to see the probability, the vector

points to certain, only small region here that r square sin theta d theta d phi shown here

and then as theta and phi valid. How this similar distribution; we going to change with

the condition that g square is given by this relationship.

(Refer Slide Time: 38:37)



So, here the (Refer Time: 38:39) profile looks like this, the given by the dotted line with

a, where the transition has no width, but we, the finite width, this coloured line is the

appearance of the spectrum.

(Refer Slide Time: 38:53)

Now, again if you do that I derivative then the signal way look like something like this

this is the g X X g Y Y and g Z Z. This is g Z Z the one is second to be the one, which is

for this from the other two. So, here the g Z Z and g Y Y is the intermediate values.

(Refer Slide Time: 39:05)



And here then example that this C O 2 dot. This is one radical, which a trapped in the

magnesium oxide powder. This is the a g X X somewhere here, g Y Y and g Z Z.

(Refer Slide Time: 39:19)

So, this now we take the next item, which is electron nuclear dipolar interaction.  We

have seen, this is the interaction which is highly direction on depended.

(Refer Slide Time: 39:28)

On the other isotropic part is given by this sort of expression dipole interaction is this.

So, both of them have this type of S dot, I type of interaction here.



(Refer Slide Time: 39:36)

This also is equal to S dot I. So, we can as well add this isotropic interaction dipole-

dipole interaction to get a single expression which looks like this.

(Refer Slide Time: 39:43)

I is the nuclear spin, a is now a matrix 3 matrix and S is the spin angular momentum and

a here now, we automatically a symmetric, because of the way this d is defined, but here

if it is average of this diagonal element, these terms out to be 0, that is average dipole,

interaction is 0, that is again into tumbling motion is fast. In solution one does not see

this, but in original true influence solution or in crystals.
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So, matrix a is symmetric. Hence it is again in a similar to this. We should be able to

diagonalize the matrix by choosing suitable axis. These are called the principle axis of

the hyperfine matrix.

(Refer Slide Time: 40:32)

Now, average  of  this  three  principle  component  will  be  nothing,  but  a  0;  obviously,

because that is why these are added, then we add this constant isotropic value. So, that is

the average value, is the sum of all this an isotropic. Values are now given by these two

parameters, these are gives how for the z is different from the other two, and c is how



this  other  two x and y different  from each other. So,  b  0 and c  0 are  called  the an

isotropic parameters, and particular b 0 is called Uniaxiality parameter and c 0 is called

the Rhombicity parameter.

(Refer Slide Time: 41:11)

Now, is a single crystal in principle one, can find out the orientation dependence of the E

P R spectrum, an axial symmetric is this equation looks very similar to g an isotropic,

and in frozen solution, again the same type of relationship can be derived as we did for g

an isotropic.

(Refer Slide Time: 41:30)



Now, here is a type of patterns we can get an axial symmetric I is half if c 0 that axial

symmetry. Now b 0 defines how far it is deviating here, uniaxiality parameter here. So,

you see b is 0, means is really isotropic

So, you will get two double lines. Now as b is 0 changes, we changes the xi, get various

types of patterns, and these two patterns,  particular  you can recognize,  they are very

similar to axially symmetric g type of thing. So, each of the hyperfine transition, I get

similar pattern as they xi, because smaller, they come closer and closer and closer, and

they give all sorts of pattern of this kind.

(Refer Slide Time: 42:09)

It is also possible that g matrix and a matrix are both present, the isotropic g an isotropic

a.  So,  they  can  have  this  type  of  appearance,  then  here  isotropic  g  that  is  all  three

transition. Here the pair of transition corresponding to A x A y A z as this centre value of

all  three of  them are same.  So, these g is  isotropic,  and the other  hand g is  axially

symmetric,  then  I  can  get  these  two  centre  of  these,  and  this  corresponding  to  a

perpendicular centre of these and this. The distance between these and this is a parallel

and centre of this is g parallel. So, these and this a different, this are different, therefore,

but values also different, but here in another place isotropic a, where a 0 is same for all of

them.  There  is  the  gap  between  the  corresponding  lines  are  same,  but  the  g  is  not

isotropic. So, these are three different values of g.



So, that way one can get various type of combination and identify the, an anisotropic

contribution, and the parameters of g and A from this powder pattern as well. So, we

have seen how the E P R studies on single crystals powder or in frozen solution; one can

determine all the, an isotropic interactions arising from g and A.

(Refer Slide Time: 43:38)

This slide shows in the two textbooks from which we have taken match of our material

in this lecture.


