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Variational Method: Applications 1 

Hello students! Welcome to this lecture. In the last lecture we discussed about the variational 

principle, its justification, the strategy of doing a variational calculation and also, we discussed 

how we can use variational principle for excited states. In this lecture we will take some examples 

and see how you can use variational principle and obtain meaningful results from this method.  
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The first example that we are going to take is that of a harmonic oscillator. The Hamiltonian, of a 

1D harmonic oscillator has got the kinetic energy operator and the potential energy operator given 

by a harmonic potential (1/2 𝑘𝑥2 = 1/2 𝑚𝜔2𝑥2), where k is the spring constant of the harmonic 

oscillator, m is the mass of the oscillator and 𝜔 is its angular frequency. Although, we know the 

exact solution of this problem, here we will take a trial function and see if the variational principle 

can reproduce the exact result, as a benchmarking exercise.  

Let’s define a trial function   

In fact, we know that the ground state wave function of harmonic oscillator is a Gaussian function.  



Hence, we know the exact value of alpha. But we will try to see whether the variational principle 

gives us that value of alpha or not.  

The next step is to evaluate the inner product of the trial wave function with itself, which turns out 

to be √𝜋/2𝛼. The next step of variational calculation is to obtain the expectation value 

corresponding to the Hamiltonian operator.  

 

The Hamiltonian has got two terms: the kinetic energy operator which has a second derivative with 

respect to x and the potential energy operator. We can use the following relation to evaluate the 

integrals.  

 

After evaluating this integral, we obtain the expression that contains some constants (m, omega, 

hbar, etc.) and one unknown alpha.  Finally, we obtain, 

 

The plot of the energy as a function of alpha is given in the slide above. For small value of alpha, 

the second term dominates, and as alpha increases the first term dominates. For a particular value 

of alpha, the energy will have a minimum, which we can obtain from the first derivative of energy 

with respect to alpha.  

 

At α0, the energy attains its minimum value.  



Let us do a numerical exercise. We plot the energy (in the units of ℏω) and the wave function for 

a series of α values. If we express energy in the units of ℏω, the true energy is of the harmonic 

oscillator ground state is 0.5. For α = 0.1, the energy is a 160 percent over estimation of the true 

energy. For α = 0.3, it comes much closer to the true energy (14% error), and for α = 0.5, the true 

energy is reproduced. By further increasing α (= 0.7), the energy again rises up. Now let us look 

at the wave function. For α = 0.1, the wave function is quite different from the true wave function 

(α =0.5), although it improves when α = 0.3 and 0.7, although they both have more or less similar 

resemblance to the ground state wave function.  

In this example, we started with my trial function which just looks like the real solution. It is not 

surprising that we could get the exact solution using variational principle. But this proves the 

efficacy of the variational principle, when the trial function is a good guess. Next, we will take 

another example of a harmonic oscillator problem, but the trial wave function would not be a 

Gaussian function but would be something that would have overall similarities but not the exact 

functional form to that of the true solution.  
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Consider the trial function ϕα = 1/(𝑥2 + α). For x = 0, this function has a finite value and for x > 

0 or x < 0, this function decays and vanishes for large values of x (both positive and negative), 

thus satisfying the boundary conditions.  

Next, we evaluate the overlap and energy integrals and get the variational energy as a function of 

the variational parameter (α).  

 

 

 

 

By minimizing the variational energy with respect to the variational parameter, we can get the 

optimal value of α(= α0) that would minimize the energy and using this α0, we can write down 

the variationally optimized wave function (ϕ(α0)). 

Now, let us do a numerical exercise by plotting the energy and wave function for different values 

of α. When α  = 0.1 and 0.3 the calculated energies overestimate the true energy (0.5 ℏω) by 400% 

and 100%, respectively. When 𝛼 = α0 = 1/√2, the variationally optimized energy is now closer 

to the true energy, although still 40% overestimation is seen. If we further increase α, (=1.2), the 

energy goes further away the ground state energy.  

Now let us look at the corresponding wave functions. When 𝛼 =  0.1 or 0.3, the wave function is 

has a poor resemblance with the true wave function, although for 𝛼 = 0.707, the variational wave 

function resembles the true wave function. This gets better when 𝛼 =  1.2, although from energy 

point of view, 𝛼 =  1.2 performs poorly compared to 𝛼 =  0.707. This is a typical feature of 

variational calculation. You have to remember that variational principle blindly minimizes the 

energy. It does not have any other condition as to what happens to the wave function. The wave 

function contains all the information, including energy. Energy is one manifestation that we can 

get out of the true wave function. Since variational principle emphasizes on the energy, it often 

gives a poor estimation of other properties. But so far as energy is concerned, the variational 

principle works well. 



Since many of our problems in chemistry, such as chemical reactions, chemical reactivity, etc. can 

be expressed through molecular energy, the variational principle has a lot of applications in 

chemistry. 
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Now let us take yet another example, this time, a hydrogen atom. The Hamiltonian can be seen in 

the slide above. We know the exact solution of this problem, where the radial part of the ground 

state wave function is an exponential function. In this example, we take a trial function as a 

Gaussian function. We can obtain the internal product of the trial function and also obtain the 

energy expectation value by following the standard procedure. The resulting variational energy is 

obtained as,  

Which can be minimized with respect to the variational parameter α. The optimal value of α(= α0) 

is 8/9π and the variationally minimized energy is -0.424 au, as compared to the true energy of -

0.5 au for the ground state of H-atom. 

If we carry out a numerical exercise similar to the previous examples, we can see that the 

agreement with energy gets better as 𝛼  approaches 𝛼0, and deviation increases when 𝛼 goes away 



from its optimal value. When we compare the wave functions, the trial wave functions are not able 

to reproduce the shape of the true wave function, which is expected since we have taken a wrong 

functional form of the function. This indicates that other properties estimated from this function 

may not be accurate, although despite taking a wrong functional form of the trial wave function, 

the variationally optimized energy is rather close to the true energy.  

From these examples we learn that even when the functional form of the trial function is not 

accurate, variational principle can give us a very good estimation about the ground state energy, 

although the same is not true for other properties.  

Thank you for your attention. 


