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Variational Principle - II 

Hello students! Welcome to this lecture. In the previous lecture, we discussed about the 

variational principle and we would continue our discussion from there. 

(Refer slide time: 00:38) 

 

In the last class we discussed what variational principle offers. Just to remind you, the 

variational principle tells us that, if we have a system, whose Hamiltonian has some 

terms that make the Hamiltonian too difficult for exact solution of the Schrödinger 

equation, in that case we can start with a trial wave function ϕ, and the variational 

principle tells us how to get an approximate solution of the problem starting from this 

guess function.  

Corresponding to the trial wave function, we evaluate the energy integral 𝐸ϕ =
⟨ϕ|𝐻̂|ϕ ⟩

⟨ϕ|ϕ⟩
. 

If the trial function is a normalized, then the denominator becomes 1. What variational 

principle tells us is that no matter what is your trial wave function, the energy that you 

are going to obtain (𝐸ϕ) is always going to be greater than the ground state energy E0.  

But what is the ground state energy? If I had the exact solution of the ground state wave 

function, then I can, of course, obtain the ground state energy. But in those cases where 

the exact solution is not possible, we do not know exact values of ψ0 and E0. 
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But variational principle assures us that no matter what trial function we take, the 

energy that is going to come out of the evaluation of this integral is always going to be 

an upper bound of the ground state energy of the system. In other words, it also tells us 

that as the trial wave function would approach the real wave function, the trial energy 

would approach the true energy.  

But we do not know the exact value of the ground state energy. How would we ensure 

that the trial energy is actually approaching the ground state energy? If you go on 

minimizing the 𝐸𝜙 and find the lowest possible value of the energy, that energy is 

going to be the best description of the ground state energy. Let us now discuss the 

justification of this principle. 

Let us assume that the true eigenfunctions of a Hamiltonian are given as ψ𝑖. In those 

cases where I cannot solve the Schrödinger equation exactly, there is of course no way 

of knowing this solution. But in those cases where the true solution is available, we can 

start from a trial function and then see how the variational principle works for those 

systems. Suppose Ei
’s are the eigenvalues corresponding to the true eigenfunctions 

ψ𝑖’s, which are the eigenfunctions of a Hermitian operator. The trial wave function (ϕ) 

can be expressed in terms of these ψ𝑖 ’s, since the latter form a complete set of 

orthonormal functions. Using a complete set of orthonormal basis, I can express any 

arbitrary function (in this case, the trial function is ϕ = ∑ 𝑐𝑖𝑖 ψ𝑖), where the coefficient 

ci’s suggest that what is the overlap or what is the similarity or resemblance of this trial 

function with an individual eigen function. 

So, if we can, in principle, express this trial wave function as a linear combination of 

this eigenfunctions of the Hamiltonian, then we can obtain the expectation value of the 

Hamiltonian operator by evaluating the energy integral. You would see that when I 

evaluate this energy integral by using the linear combination of ψ as ϕ, in both bra 

and ket I will end up in getting an expression like this.  

We have seen this expression when we were discussing the postulate 4 of quantum 

mechanics. Here. |ci|
2 represents the probability of observing energy Ei, So, if the system 
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is one of the eigenfunctions of the operator, then I will get only that corresponding 

eigenvalue with coefficient of that eigenvalue as 1. All other eigenvalues will have 0 

probability to be found, because the system exists in one of these eigenfunctions. But 

if the system does not exist in one of these eigenfunctions that means we are talking 

about a trial function ϕ over here, then I would get a distribution of energy.  

Now let us expand this term by taking first few terms.  

 

Note that in the second line all energies E1, E2, … are replaced by E0. Since Ei>E0, the 

equal sign of the first expression is replaced by the greater than/equal sign. This relation 

tells that the expectation value coming from that trial wave function ϕ is always going 

to be greater than the ground state energy. It would become equal to the ground state 

energy, only under one condition when ϕ =  ψ. Only in that case, the 𝐸ϕ = 𝐸0.  

Now the next question is that, how do we implement this idea for a system?   

(Refer slide time: 11:00) 

 

We use the following strategy for a variational calculation. Since, variational principle 

tells that 𝐸𝜙 ≥ 𝐸0, we can minimize 𝐸𝜙 and obtain E0. If we define the trial function 

(𝜙) as a function of a parameter 𝛼, i.e., 𝜙(𝛼), then the energy expectation value 𝐸𝜙 =

𝐸𝜙(𝛼). We can now minimize 𝐸𝜙 by evaluating 𝑑𝐸𝜙(𝛼)/𝑑𝛼 = 0. This will give the 
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best αm , the value of alpha which minimizes the energy. We can readily evaluate 

ϕ(α𝑚), the best description of my wave function that gives the lowest energy 𝐸ϕ(α𝑚).  

By following this strategy, I get the best possible description of the wave function, best 

possible description of the energy, given the choice I made with respect to the trial 

function. So, this procedure works well if my trial function is good. If my trial function 

is, by design, a poor trial function, no matter what I would do, I would not be anywhere 

close to the real solution. Now you may take a different trial function and evaluate the 

variational energy. Upon comparison of the variational energy of the two trial functions, 

we can see which trial function gives lower energy. 

While choosing a trial function, we must ensure that it satisfies the boundary conditions 

of the problem and it is a well-behaved function.  

So far, what we have discussed the variational principle for the ground state energy. 

Can we use variational principle for the excited states? The answer is yes but with some 

caveats. 

(Refer slide time: 17:14) 

 

The statement of the variational principle remains the same when we want to apply 

variational principle for the excited states. We again express the trial function as a linear 

combination of the true eigenfunctions of the Hamiltonian (ψ𝑖) , which form a 

complete set of orthonormal basis.  

65



For the excited states, we impose one more condition, i.e., the trial wave function, in 

addition to satisfying the other condition that we discussed earlier, must be orthogonal 

to the ground state wave function.  

 

When this condition is met, c0, the coefficient of ψ0, in the expansion of ϕ becomes 

0, i.e., the contribution of the ground state eigenfunction to the overall trial function 

becomes 0.  

Now, when we evaluate the expectation value of the energy, we will get,  

 

Here, c0 = 0. When we expand this sum, the first term is |c1|
2 E1. Following the steps like 

the previous case of the ground state, we would see that the inequality in the last line 

will turn out to be equal only under one condition and that condition is when is |c1|
2 =1 

and all other coefficients become 0. The resulting energy is the energy of the first 

excited state. 

Just like the variational principle for the ground state wave function, we can also use it 

for the first excited state function, but with one additional condition, i.e., the trial wave 

function must be orthogonal to the ground state wave function. Now if I am interested 

in getting the second excited state what should I do? Again, the same procedure can be 

shown to work, but under the condition that trial wave function must be orthogonal to 

the ground and the first excited states. Only under that condition I can use variational 

principle for the second excited state. This can be extended to higher excited states.  

But it is not always easy or it is not even always possible to define a trial wave function 

which is simultaneously orthogonal to so many different functions. In some cases, at 

least the first excited state can be obtained using variational principle.  

If you remember the eigenfunctions of the harmonic oscillators, you would know that 

the ground state eigenfunction is an even function while the first excited state 
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eigenfunction is an odd function. In such a situation, if I am interested in getting the 

first excited state energy using variational principle, then my trial wave function, which 

has to be now orthogonal to the ground state wave function, can simply be an odd 

function. But imagine if I do the same for the second excited state of harmonic oscillator 

problem, this simple principle will not work because the second excited state is an even 

function and then it does not necessarily satisfy the condition that it is simultaneously 

orthogonal to ground state (even function) and first excited state (odd function). 

Therefore, the application of variational principle for the ground state is somewhat 

challenging.  

In this lecture we discussed about the variational principle, its justification, procedure 

to do a variational calculation, and finally if we can apply it to the excited states. We 

will look at some examples and study variational principles in greater detail in our next 

class. That you for your attention. 
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