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Hello students! Welcome to this lecture. In the last few lectures we discussed some 

exactly solvable models in quantum mechanics. We learned how we could analyze the 

solution of hydrogen atom problem and now in this lecture onwards we will start 

looking at more complex problems and how we cannot solve those complex problems 

exactly using quantum mechanical methods and how and where we need approximate 

methods to solve such complex problems. But before that we would do some basic 

discussion on such problems. 

(Refer slide time: 01:12) 

 

One important thing that comes to our help is the atomic unit system. You would see 

that when we write down the Hamiltonian of a multi-electronic atom or a molecule, we 

have many terms with same constants appearing repetitively. That apart, when we look 

at the energies of the molecular systems, we see that the magnitude of these energies is 

such that our regular SI units or CGS units are often not convenient to express these 

numbers. So, it was felt that perhaps we should have a different unit system and this 

unit system is called atomic unit.  

In atomic unit, some of the commonly used constants are given the value of unity. Just 

like we have in our SI system, the unit mass, the unit length, and the unit time, we have 
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in the atomic unit, the unit of mass defined as the mass of an electron. All other masses, 

e.g., the mass of proton, the mass of a nucleus, etc. are expressed in the unit of electron 

mass. Its SI value is 9.1 x 10-31 kilogram, a small number if we use the SI unit. Life 

becomes difficult if we use SI unit for such masses. So, it is better if we use a different 

unit system that has a simpler value to write down and to communicate. So, mass of 

electron is 1 au. Similarly, the charge of electron is considered 1 unit charge in atomic 

unit whose SI value is given in the picture above. Of course, the electron is negatively 

charged and hence its charge is -1. When you have a positively charged particle, then 

you express it as + sign followed by the magnitude of the charge in the units of electron 

charge.  

Like we have the unit of time in our SI system or CGS system, we have unit of time in 

atomic unit, which is expressed as the time taken by an electron to revolve 1s orbital of 

hydrogen atom which comes about to be 2.419 x 10-17 second. So, you see in SI unit 

this number is quite small. We can of course express it in terms of attosecond (10-18 

second). The atomic unit of time is 24.19 attosecond.  

The other commonly used quantity is ℏ in quantum mechanical systems which is equal 

to 1 in atomic unit. Therefore, the Planck’s constant in a.u. becomes 2π. The unit of 

length in atomic unit is expressed by the Bohr’s radius which is 0.53 Angstrom. The 

energy is expressed in terms of Hartree, the atomic unit of energy (which is given, the 

symbol Eh). 1 Eh = 27.212 eV (which is actually twice the energy of hydrogen atom). 

If you remember, the energy of the hydrogen atom in its ground state was -13.6 eV 

which is essentially -0.5 a.u. of energy.  

Similarly, other constants like speed of light, the fine structure constant, etc. are given 

in the slide above. The other quantity that we would be using in this course is the Bohr 

magneton, when we study the effect of external magnetic fields on the energy levels. 

The Bohr magnetons relation is given by as 𝑒ℏ/2𝑚𝑒, e is the charge of electron = 1 au, 

ℏ = 1 au and me = 1 au. Therefore, Bohr magneton in a.u. is 0.5. Like Bohr magneton, 

we can discuss the nuclear magneton, where I simply replace the mass of electron by 

the mass of proton. Since we know that the mass of proton is about 1800 times heavier 

than the mass of electron, you see the nuclear magneton is 3 orders of magnitude smaller 

than the Bohr magneton. Vacuum permittivity is another constant that appears in the 

Hamiltonian, when we express the interaction between electron and nucleus or 
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interaction between electron and electron as Coulombic interactions. In those 

expressions we often have 4πϵ0 which is made 1 in a.u.  

(Refer slide time: 08:40) 

 

Now let us use this atomic unit to write down the Hamiltonian of a molecule in general. 

A molecule is composed of many atoms and each atom would have one or many 

electrons. Hence, the molecule would have several electrons. A molecule is therefore a 

multi-nuclear, multi-electronic system. For such a system I want to write down the 

Hamiltonian. I already know that Hamiltonian would have two different contributions, 

one would be from kinetic energy, the other would be from potential energy.  

Each particle in my system would contribute to the kinetic energy because each particle 

with a mass would have a kinetic energy. If I have N number of nuclei and n number of 

electrons, then I have those many number of kinetic energy terms coming out from 

nuclei and electrons respectively.  

So, the first term in the Hamiltonian expression shows -1/2MA the Laplacian 

corresponding to the nucleus, is the kinetic energy of nucleus A, where the index A, 

goes from 1 to N. Each nucleus contributes to 1 kinetic energy operator. Here you see 

the mass of the nucleus is kept within the summation because in a molecule I would 

have different atoms and these atoms will have different atomic mass.  

The next term that you see in the Hamiltonian has two terms kept in brackets. The first 

term corresponds to the kinetic energy of the electron. I have n electrons in my system. 
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I have n kinetic energy terms arising from these electrons. The Laplacian here 

corresponds to each electron, which is 
𝑑2

𝑑𝑥2
+

𝑑2

𝑑𝑦2
+

𝑑2

𝑑𝑧2
. The Laplacian is the operative 

part of this kinetic energy operator and the expression of the kinetic energy has 

−ℏ2/2𝑚𝑒 multiplied to it which is -1/2 in au. The second term within the brackets has 

a negative sign and this is a potential energy term between a nucleus A and an electron 

i. If I have N nuclei, each nucleus in my molecule can interact with each of the n 

electrons present in my system. So, if I have small n electrons, N nuclei, I have n x N 

number of electron-nuclear interaction terms. The riA is the distance between electron i 

and nucleus A with ZA nuclear charge. This electron kinetic energy term plus the 

electron-nucleus interaction term are called one electron operators because each term 

here corresponds to one electron.  

The next term in the Hamiltonian is the electron repulsion term. If I have n electrons, 

each electron interacts with every other electron (n-1). I would have n(n-1)/2 number 

of electron-electron interactions. Finally, the last term is the nuclear-nuclear repulsion, 

between atom A and atom B that are separated by a distance RAB. 

While solving this problem quantum mechanically, we invoke an important 

approximation, the so called Born-Oppenheimer approximation. The idea behind the 

Born-Oppenheimer approximation is that the mass of electron is very small compared 

to the mass of the nucleus. So, when the electrons are moving around, the nuclei are 

essentially more or less static. Since they correspond to such different dynamics, we 

can decouple the electronic degrees of freedom from the nuclear degrees of freedom. 

Essentially what we say is that when you are solving the electronic degrees of freedom, 

we can assume that the nuclear degrees of freedom are all frozen. As if the nuclei are 

frozen and in those frozen nuclear conditions, we are trying to solve the electronic part 

of the problem. Under this approximation, the kinetic energy of the nuclei becomes 0 

and if the nuclei are not moving, the distance between them is fixed. So, the inter 

nuclear repulsion becomes a constant. Here, I have the first term becoming 0 and the 

last term becomes a constant within the Born-Oppenheimer approximation. We know 

that if I have a constant term in my Hamiltonians I need not worry about it. I can simply 

solve the remaining part of the operator and I can simply add this constant to the 

eigenvalues that I get.  
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This leaves me with the terms which are called as the electronic Hamiltonian. So, this 

is my molecular Hamiltonian which has the kinetic energy of the electron as well as the 

nuclear-nuclear repulsion and if I exclude these two terms what I am left is the so-called 

electronic Hamiltonian. Of course, when you solve the electronic Hamiltonian, you also 

add afterwards this constant VNN. Compared to a molecular Hamiltonian, the 

Hamiltonian of a multi-electron atom has some minor differences, e.g., N=1 (as there 

is one nucleus) but n > 1, as it depends on the atom that I am considering. If I am 

considering helium atom or lithium atom, I will have n = 2 or 3, whereas N=1.  

Whether molecule or a many electron atom, the Hamiltonian contains the two-electron 

operators which create trouble in getting the exact solution of the Hamiltonian operator. 

As long as I have a system which depends only on 1 electron operators, I can solve such 

problems exactly. But the moment I have inter-electron interactions, that means 2 

electron operators, coming into the picture, I fail to solve the problem exactly through 

quantum mechanics. Now in those cases we would use some approximate methods and 

that is what we are going to discuss next.  

(Refer slide time: 20:09) 

 

The first approximate method that we are going to discuss is the variational principle. 

What does variational principle tell and how we can use then this principle to solve 

quantum mechanical problems, is what we are going to discuss next. Variational 

principle is quite simple in its statement. 
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For a complex system, we can write down the Hamiltonian and we would like to solve 

the corresponding Schrödinger equation, with the ground state eigenfunction as ψ0, 

which is the solution of the Hamiltonian with corresponding eigenvalue E0. Since ψ0 

is an eigenfunction, I would get the expectation value of Hamiltonian as a single value 

of energy E0 without any uncertainty. But this is the case when I know the exact solution 

of the Hamiltonian, but as we have realized whenever I have more than 1 electrons I do 

not know the exact solution.  

When I do not know the exact solution (the wave function ψ0, which contains all the 

information), variational principle tells me that I can take another trial function (ϕ) and 

use it in place of the exact solution. When you do not know the exact solution, we are 

making a guess. Now this guess function is ϕ.  

With this guess function, I can evaluate the energy integral 𝐸ϕ = ⟨ϕ|𝐻̂|ϕ⟩/⟨ϕ|ϕ⟩, 

either analytically or numerically using a computer. If the trial function is a normalized 

function, the denominator is 1. What variational principle guarantees me is that no 

matter what guess function I choose, 𝐸ϕ is always going to be greater than the real 

value of the energy E0. At best it can become equal to E0, but it can never become less 

than E0.  

That means variational principle gives me an upper bound to the ground state true 

energy. If a trial wave function gives the energy close to the true energy then that trial 

function is a good approximate solution of the system. Now I have a way to find out 

whether my trial wave function is a good guess or not. How do I do that? This is where 

variational principle comes to help. Because variational principle tells me that try your 

best to minimize the energy because you can never get 𝐸ϕ lower than E0, at best it will 

become equal to E0.  

In this lecture we discussed about the concept of variational principle. How it is justified 

and what are its consequences, are the topic of our next discussion. Thank you for your 

attention.                                                                                                                                                                                                                                 
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