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Exactly Solvable Models - II (continued) 

Hello students, welcome to this lecture. In the previous lecture, we were discussing about some 

exactly solvable models in quantum mechanics and in part of that discussion, we were looking at 

the problem of hydrogen atom.  

(Refer Slide Time: 0:48)  

 

In hydrogen atom we see that we have an electron which moves around the environment of the 

nucleus. The Hamiltonian has kinetic energy operator corresponding to the nucleus, the kinetic 

energy operator corresponding to the electron plus the potential energy operator. The electron 

moves around the nucleus and we express the movement of electron in the spherical polar 

coordinate system, where the three coordinates are r, θ and ϕ. r is the radial part, θ and ϕ are the 

angular part of the wave function. We also discussed that the operator, kinetic energy operator of 

the electron also has this term is called the Laplacian. The Laplacian already contains the operator 

𝐿2 (the angular momentum operator). That is why in the previous class we said that the total 

eigenfunction of hydrogen atom that is ψ(𝑟, θ, ϕ) = 𝑅(𝑟)𝑌(θ, ϕ).  

The angular part of the solution is essentially the eigenfunction of the angular momentum operator, 

because in our hydrogen atoms Hamiltonian, the only operator that had angular dependence was 
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the 𝐿2 operator. We know its eigenfunctions. That leaves us with the radial part of the solution. 

We are not going to derive the solution rather we are going to use the results of this exactly solvable 

model.  

(Refer Slide Time: 2:30)  

 

Now, when we look at the energy of hydrogen atom, we see that the energy 𝐸𝑛𝑙𝑚  depends on three 

quantum numbers; n is the leading quantum number, the principal quantum number, l and m are 

the trailing quantum numbers, the azimuthal quantum number and the magnetic quantum number 

respectively. m value depends on the value of l and l value depends on the value on n. The energy 

is given by in terms of a constant which is -13.6 eV multiplied by 1/n2. With increasing n the 

energy levels are shown in the diagram above. The negative energy signifies the stable atom 

comprising of a negatively charged electron around the positively charged nucleus. When we 

ionize this electron, the electron escapes the orbits and becomes a free particle.   

In that case, n goes to infinite and energy becomes 0. The energy levels will be extremely close to 

each other and the continuous range of energies would appear. But, for the stable states, the energy 

states are discrete, they are well separated, they take certain values -13.6 eV/n2.  

Next we discuss the degeneracy of the energy levels. The energy expression has only n dependence 

while the wave function depends on n, l, and m. The energy not showing l and m dependence is a 

a special case for all 1-electron systems. For every value of n, we can have n number of l values  

50



(l = 0, …. n-1). The value of m goes from -l to +l in the step of 1. So for each value of l, we have 

got 2l+1 number of m values.  

Although the wave function is different for each of the values of n, l, m, the energy only depends 

on n. Hence for a given value of n, all the wave functions have the same energy. They are called 

degenerate states. For n = 1, the degree of degeneracy is 1 (1s). And for n = 2, it is 4 fold degenerate 

(2s, 2px, 2py, 2pz) and so on. When l is 1 (i.e., p functions), m  = -1, 0, +1. In Cartesian system, 

we refer to them as px, py, and pz. So, the 2s 2px, 2py, 2pz orbitals have same energy for hydrogen 

atom, only for hydrogen atom, it does not apply to the many-electron atoms. So, in case of helium 

atom 2s and 2p orbitals have different energy. Of course, 2px, 2py, and 2pz have same energy even 

in case of helium atom (and for all other heavier atoms), because unless we have external magnetic 

field this degeneracy of Px Py Pz are not lifted that is why we call them as magnetic quantum 

numbers. In case of n =3, you would see the 3s, the 3 number of 3p and the 5 number of 3d orbitals 

(together the 9 orbitals) will have same energy. To generalize, for hydrogen atom for a given 

principal quantum number n, we have n2 degeneracy of eigenfunction. Since each orbital now have 

two electrons, we can fill 2n2 electrons for a given value of n. 

With the help of eigenvalues, we can easily predict the emission spectrum by calculating the 

difference between any two energy levels: the starting energy level and the final energy level. The  

energy separation corresponds to the wavelength of the emission line. So, using quantum 

mechanical model of hydrogen atom we can now explain the results of hydrogen atom’s emission 

spectrum. Even Bohr’s atomic model could do that, but remember Bohr’s atomic model could not 

explain the hydrogen atom’s emission spectrum in the presence of external field. But the quantum 

mechanical model explains the emission spectra in presence of external field or even emission 

spectra for hydrogen like atoms.  

(Refer Slide Time: 10:30)  
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Now, after discussing the eigenvalues, let us look at the eigenfunctions of the hydrogen atom. The 

hydrogen atoms eigenfunctions are shown here. The full wave function contains a radial and an 

angular part. We have already discussed the angular part as the eigenfunctions of angular 

momentum operator. The form of the shape of s orbital, shape of p orbital, shape of d orbitals that 

we are already familiar with are the results of this spherical harmonics. In this discussion for 

hydrogen atom solution, we will not bother about the Ylm because they are simply the angular part 

of the solution. 

We will be more interested in the new feature that we have encountered, i.e., the radial dependence. 

The radial dependence comes because the electron in this hydrogen atom can now explore the 

entire region, entire length scale starting from the nucleus to large separation from nucleus. The 

radial parts of these equations are quite scary, but do not worry about them. Just like we did for 

other systems, we will also look at the qualitative features arising from these equations.  

In R10, the first index is for n (=1 here) and, the second index is for l (=0 here), thus indicating 1s 

function. The radial dependence of 1s orbital is shown in the image above.  

In R10, 2(Z/a)3/2 (Z = nuclear charge = 1 for H and a = Bohr radius) is the normalization constant. 

In atomic unit, (Z/a)3/2 = 1. This leaves us with the e-Zr/a term (or e-a in atomic unit for H) as an 

exponentially decaying function. The function starts from a finite value at r = 0 and as you go 

away from the nucleus, the wavefunction approaches 0, suggesting a vanishing probability of 

finding an 1s electron at very large r. You may get confused by this finite value of the radial part 
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of the wave function at r = 0, which means that as if the electron is sitting right on top of the 

nucleus. We will resolve this issue when we discuss the probability density.  

Now, come to 2s orbital. Apart from the constants, we have e-Zr/2a as the exponentially decaying 

function (e-r/2 in atomic unit for H) and a polynomial of r. We are not introducing here but we can 

actually use the Laguerre polynomials to describe the hydrogen atom solution. The polynomial 

you see is the first order polynomial.  There will be one value of r at which this polynomial will 

become 0. At that value of r, the wave function would become 0, producing a radial node. If you 

see the figure for the 2s radial function, you see that this function develops a radial node. Similarly, 

when I look at the 2p orbital, (n = 2 and l = 1), it has again a polynomial of r. At r=0, the wave 

function is 0. At lower values of r, the r term dominates and for larger r, the exponential decaying 

term pulls down the wave function, giving rise to a maximum. 

For 3p, the radial function has an exponentially decaying function multiplied by the polynomial 

(r-r2/6, with Z=1 and a=1) which becomes zero at r = 0 and at r = 6. There is, thus, one node in 3p 

orbital (as we do not consider r = 0 as a node, the trivial solution of the polynomial).  
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While you were discussing about this radial part of this wave function, we always had this thing 

in mind that the electron is not actually going only along the radial direction, electron is also 

making an angular movement along theta and phi direction. Imagine, what we actually want to 

know is to find out the probability of finding this electron at a certain value of r away from the 

nucleus, does not matter what is the value of theta and phi. It is as if we are trying to calculate the 

probability distribution in this ring, which is separated, which is given by this radius r and radius 

r + dr.  

We can obtain that value, if we integrate out the two angular coordinates (theta and phi) and only 

write the radial part of the solution. When you integrate out the angular part, we get this 4π and 

then we have the radial part of the solution that is r2 dr as the volume element in the spherical polar 

coordinate system corresponding to r and the square of Rnl(r) term.  

We are trying to get the probability distribution for a value of r between r and r+dr, no matter what 

is the value of theta and phi. The resulting function is called the radial distribution function. Now, 

this radial distribution function is a very interesting quantity that gives many useful features about 

the hydrogen atom problem.  

We see the radial distribution function for 1s orbital shows a single sharp peak at a small value of 

r, which means that the electron in 1s orbital are more likely to be found closer to the nucleus and 

they are found in a very localized region of space. The 2s radial distribution function shows a small 
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probability at a small value of r (the distance between the nucleus and the electron) and a larger 

probability at a large value of r. In between the two peaks, there is a node. This indicates that, if 

the electron is in 2s orbital, we have some small probability of finding it close to the nucleus and 

then there will be a nodal region where we will never find an electron and most of the times we 

are going to find the electron at this large value of r. So, average distance of the electron when it 

is in 2s orbital is certainly greater than that, when it is in 1s orbital as the radial distribution function 

shows. Since the 2s orbitals are spherically symmetric, the shape of 2s orbital shows a sphere 

inside a sphere. For 3s orbital radial distribution function, there are 3 places at which the function 

shows maximum, and there are two places at which it shows node. The radial distribution function 

of 1s orbital falls sharply, 2s orbital shows a slow decay and 3s orbital shows very slow decay. 

This indicates as we go for higher n value, the electrons are diffused or they can be found farther 

from the nucleus. 

In case of 3p function, you have got 1 radial node, while 2p does not have a radial node. We see 

2p orbital as a dumbbell shape, due to the angular nodal plane. For 3p, you can imagine a dumbbell 

within a dumbbell and in between the two dumbbells, there is no electron density, showing the 

radial plane. In case of 3d, there is no radial node. 

Comparing the radial distribution functions of 3s, 3p, and 3d, you should notice that the 3s electron 

is found at larger distances compared to 3p and 3d. That is because, the overall probability is 1 and 

since you have got two nodal structures for 3s orbital, to compensate that the function decays at  

even greater value of r. And in case of 3d, you would see the average value of the radial distribution 

function is smaller than that of 3p and 3s orbital.  

Hydrogen atom is the only problem which can be exactly solved. All other heavier atomic systems 

and all other molecular systems mimic the solution that we obtained for the hydrogen atom. We 

can not solve those problems exactly, and this is where we require approximate methods. And 

some of those methods will be the topic of our discussion in our future classes. Thank you for your 

attention. 
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