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Hello students! Welcome to this lecture. In the last lecture, we discussed a few exactly solvable

quantum  mechanical  models,  e.g.,  the  particle-in-a-box  and  harmonic  oscillator.  These  two

problems  dealt  with  motion  of  a  single  particle  in  one-dimension.  Now,  we  are  trying  to

understand what if the particle shows a circular motion. 

(Refer Slide Time: 00:59)

In such a case,  the angular momentum operator  is useful.  In the last  lecture we defined the

quantum mechanical form of the angular momentum operator, which is the cross product of  r

and p.  We can construct the Cartesian components of this angular momentum operator Lx Ly,

Lz. We also discussed about  L2 square, and the step-up/step-down operators (L+,  L-). The three

Cartesian components of the angular momentum operator do not commute with each other, while

they commute with L2. That brings an interesting situation. If we consider  L2 and Lz pair, they

commute, and they can have a common complete set of eigenfunctions. Since in the spherical
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polar coordinates, the Lz operator has a simple form, Lz is considered to be the operator for

which simultaneous eigenfunctions are obtained. 

Next,  lets  discuss  the  eigenfunctions  and  eigenvalues  of  the  L2 and  Lz  operators.  These

eigenfunctions are called spherical harmonics (Yl,m). 

(Refer Slide Time: 03:54) 

The spherical harmonic eigenfunctions (Yl,m ) have got two indices l and m. You remember when

we talked about particle-in-a box or harmonic oscillator, the wave functions depend on a single

index – a single quantum number. But here since we are constructing simultaneous eigenfunction

of L2 and Lz, we end up in having two quantum numbers (l and m). 

When L2 acts on spherical harmonics, the outcome or the eigenvalues are depend on l. When Lz

acts on spherical harmonics, the outcome depends on m. Here, l is the leading quantum number

or independent quantum number and l can take values 0, 1, 2 … for orbital motion. Once l gets

defined the value of m follows. So, m is not an independent quantum number, it is the trailing
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quantum number,  it  is  the  dependent  quantum number,  it  depends on the  value  of  l.  If  l is

defined, then m can take certain possible values, i.e.,  m goes from -l to +l in the step of 1. So, if l

= 0, then m = 0.  When l = 1, m = -1, 0, +1. 

The same algebra of angular momentum can also be used for spin or spin angular momentum.

Spin  also  has  similar  properties  like  angular  momentum  operator.  Both  orbital  angular

momentum and spin can be expressed with the spherical harmonic functions, except for the fact

that when we are talking about an electron spin, the leading quantum number l (or s for spin) is

½. In that case, m = (= ms ) = -1/2 and +1/2. 

 (Refer Slide Time: 08:08) 

When  a  particle  shows a  circular  motion,  for  which  we are  discussing  angular  momentum,

working  with  Cartesian  coordinate  system  is  not  advisable.  Instead,  the  spherical  polar

coordinate  makes  life  much  simpler.  Let  us  define  the  spherical  polar  coordinate  (see  the

diagram  in  the  above  slide  screenshot).  The  three  orthogonal  coordinates  in  the  spherical

coordinate system are the radial coordinate (r) that determines the radius of the sphere, the two

angular coordinates θ ,∧ϕ . θ is defined as the angle that r vector makes with the z-axis. If you

make a projection of the point to xy plane and measure the angle that this vector makes with x-

axis that value represents the ϕ angle (see the diagram). As in the Cartesian system we have x, y,

z, in spherical polar coordinate system we have r, theta and phi. While theta goes from 0 to ,
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phi can go from 0 to 2. For each value of theta, I can move around the z-axis along xy plane

and I can make 2 revolutions. If I do this for a fixed value of  r the resulting structure that I

would  get  will  be  a  sphere.  That  is  why  this  coordinate  system  is  called  spherical  polar

coordinate system as it traces a sphere when we scan through the theta and phi components for a

given value of r. Here theta and phi are the two angular coordinates and r is the radial coordinate.

For  angular  momentum  operator  we  do  not  consider  r dependence,  we  would  mostly  be

interested in the results of the two angular coordinates. 

Now, let us look at the form of the spherical harmonic eigenfunctions (Yl,m), see above. There are

several terms in the expression but we will break them down. The first term is the normalization

constant and it depends on l and m. Once you define l, m, this term is a constant. The functional

form of the eigenfunctions comes next. 

Let us look at the last term, eℑ ϕ, which has phi dependence and depends on quantum number m.

If m = 0, this term does not exist, if m = 1 or -1, this term is  e iϕ or  e−i ϕ. The  1 / √2 π is the

normalisation constant. 

Now, let’s see the middle terms that come from the theta part.  Since  l and  m are inherently

coupled, you see both l and m dependence here. This part contains a differentiation of the order

m.  The  differentiation  is  of  the  Legendre  polynomials.  Some  of  the  lower  order  Legendre

polynomials are shown in the figure above. It is recommended that with the given polynomials,

you write down these spherical harmonics for a few values, so, that you would appreciate the

results well. 

The eigenfunctions of the angular momentum operator are used in the results of particle-in-a

sphere and in hydrogen atom problem. 
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(Refer Slide Time: 14:59)

Now, let us consider the next exactly-solvable system, that is the hydrogen atom. When you

consider a hydrogen atom, we have a central nucleus around which an electron moves around. It

is convenient to express this system in the spherical polar coordinate system introduced earlier.

Apart from the two angular coordinates (theta and phi), we now have the radial coordinate that

can change, which determines the radial distance of the electron from the central nucleus, which

can vary from 0 to infinity.  

Now, if we want to solve this problem quantum mechanically, the first step is to write down the

Hamiltonian.  The  Hamiltonian  has  the  kinetic  energy  (of  nucleus  and  of  electron),  and  the

potential energy of interaction between electron and nucleus (see the above figure). 

The  kinetic  energy  operators  are  expressed  he  as  the  Laplacian  (noted  by  nabla  symbol  or

inverted delta). The Laplacian is given by
d2

d x2
+
d2

d y2
+
d2

d z2
 in the Cartesian system, which can

also  be  expressed  in  the  spherical  polar  coordinate  system.  The  potential  energy  is  due  to

interaction of the positively charged nucleus with the negatively charged electron which can be

expressed as a Coulomb potential. 
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In the Hamiltonian we wrote down, we have got two independent particles: the electron and the

nucleus. There is a straightforward way with which we can convert these two-particle systems

into two effective one particle  systems.  I can rewrite this  Hamiltonian operator in a slightly

different way, where the first term shows not the kinetic energy of the nucleus rather the kinetic

energy corresponding to a fictitious particle with mass capital M, which is the sum of the mass of

two systems m1 plus m2 in this case mass of nucleus plus mass of electron. The second kinetic

energy term corresponds to an effective particle of reduced mass μ, the Laplacian is not of the

electron coordinate, rather the separation between the nucleus and the electron. 

The first term involves the movement of the centre of mass. It essentially means that if I move

my hydrogen atom from one place to another, what would be the effect? I know it does not

matter, as long as the internal coordinate (nucleus-electron separation) does not change. Leaving

aside this  overall  translational  motion,  I  am left  with the second and the third terms,  which

actually depend on the separation between the electron and nucleus.

Since mass of electron is much smaller than the nuclear mass, the sum of the two will be close to

the latter. Hence, the centre of mass will be very close to the nucleus. Thus, you can effectively

call the first term as the kinetic energy of the nucleus. Look at the second term. The second term,

represents the reduced mass which is going to be very close to the mass of the electron. Again,

the second kinetic energy term is the electron kinetic energy. But the advantage is that now, the

two kinetic energy terms are decoupled and hence can be treated separately. 

Now, let us focus on the second and third term, which depend on the internal coordinate (r). The

Laplacian is shown in the spherical polar coordinate system, which has terms dependent on the

radial and angular components. I am expressing the Laplacian in a simpler way. The first term

contains only radial terms. The second term has r dependence apart from L2 (the square of the

angular momentum operator). Now our Hamiltonian of hydrogen atom actually has the L2 term.

Why is it so important? Because we already know its solution. 

As it would turn out, when you do the derivation, you would see that the overall wave function

has dependence on three different quantum numbers:  l and  m correspond to the two angular

coordinates (exactly the way we discussed about the angular momentum operator). On top of it,

we have got another quantum number n, the so-called principal quantum number. In this case, n
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is the leading quantum number and  l and  m follow the value of  n. The total wave function is

given by the radial part (depends on n and l) and angular part (depends on l and m).

(Refer Slide Time: 25:22)

We will  come back to  the  explicit  form of  the wave function  later.  First  let  us  look at  the

eigenvalues or the energies (Enlm). Actually, when you check the expression, you would see that

the  energy  depends  on  (apart  from some  constants),  one  quantum  number  n.  The  constant

appearing in the energy expression is the Rydberg’s constant, which is -13.6 eV. This constant is

multiplied by 1/n2, where n = 1, 2, 3…

The diagrammatic presentation of the energy levels is made in the above figure. Since the energy

is inversely proportional to n2, as you go higher, the separation between two neighbouring energy

levels get reduced. But, one important thing that you should notice is the negative sign. The

negative sign indicates that this is a stable situation, i.e., the electron is being attracted to the

environment of the nucleus. When  n is very large, suppose  n is infinite, the energy value will

come close to 0. What does that represent? That would represent that when n is very large, the

electron has gone very far away from the nucleus. So, much so, that at one point the electron will

lose any contact with the nucleus and in that case, we would call that it an ionized (free) electron.

In that sense situation the electron becomes ionised, leaving behind the cationic nucleus. In that
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case, there is no interaction energy. This leads to a free particle. An electron which is free from

the influence of the electron. But as long as it is under the influence of the nucleus, the energy is

negative. 

Additionally, we would also see that the energy depends only on n but not on l and m. This leads

to degenerate states. This degeneracy and the form of the eigenfunctions is what we are going to

discuss in our next class. Thank you for your attention.
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