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Lecture 41: Oscillating Perturbation 

Hello students! Welcome to this lecture. In the last few lectures we have been discussing the time 

dependent perturbation theory. In the last lecture we looked at a special case of perturbation where 

the time dependent-perturbation was a slowly switched constant perturbation. In that case, we saw 

that when we apply a slowly switched constant perturbation and wait for a long time, the time-

dependent perturbation theory gives us the same results as obtained by the time-independent 

perturbation theory.  However, in the present lecture we will look at a slightly more complicated 

problem, that relates to an oscillating perturbation. This occurs, for example, when molecular 

systems interact with electromagnetic radiation, in a spectroscopic experiment. Throughout the 

spectroscopic experiment, the radiation continuously interacts with the matter.  
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From the previous lecture, we derived the following relation for the coefficient of the final state 

due to a time-dependent perturbation (H’(t)) as,  

 



When we have an oscillating perturbation, i.e., 

we can obtain cf(t) as,  

Here, Vfi is the coupling strength between the stationary states i and f via the perturbation, ωfiis the 

energy difference between the two stationary states, and ω is the frequency of oscillation of the 

perturbation (in case of electromagnetic radition, this is the frequency of the radiation). The terms 

in the round brackets in the last expression, have oscillatory functions in the numerator. The ω in 

the denominator can have very large values (106-1015 Hz for radio-wave to UV radiation), thus 

making the first term negligible. On the other hand, the second term can have small or large values 

depending on the value of ωfi. Hence, ignoring the first term in the barckets, from the above value 

of the coefficient, we can obtain the population of the final state as, 

When, ωfi~ ω, the above expression can be evaluated as  

where, the following relation is used:  

If we plot the population of the final state against ωfi –  ω, we see that the population peaks at 

ωfi =  ω and it decays quickly when this resonance condition is not met. The other interesting 

feature observed here is that the population increases as t2
 at the resonance condition. 



At the resonating condition (𝜔fi =  𝜔), the rapid population transfer is reminiscent of the special 

case of Rabi oscillation for a degenerate 2-state system. When the two states are degenerate, even 

a minor perturbation was sufficient for a complete population transfer from state 1 to state 2. In 

the case of oscillating perturbation, when the resonance condition is met, the energy of the state i 

added with the radiation energy matches exactly to the energy of the final state. Here, as if the 

radiation (under resonating condition) introduces a degeneracy between the initial and final state. 

This causes a rapid population transfer.  

In the above figure, you would notice that as time progresses, the peak height increases 

quadratically with t, while the peak width decreases with t. As a result, the overall population 

transfer occurs as a function of t.   
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So far, we have discussed the population transfer from one initial state to one final state. Often, 

the final state (an excited state) lies closely spaced with many other excited states. Here, we will 

discus the case where the final state is part of a continuum, i.e., there are many closely spaced 

states, with density of states (i.e., number of states per unit energy), given by 𝜌(𝐸). The number 

of states present in an energy range dE is given by 𝑑𝑛 = ρ(𝐸)𝑑𝐸. The total transition probability 

from the initial state i to this continuum of dn states is given by,  



From previous slide, we have obtained  

Hence the total transition probability P(t) becomes, 

where, 𝜔fi is replaced by 𝐸/ℏ, where E is the energy difference between the initial state and the 

continuum. The above integral contains a sin2x/x2
 term which peaks at the resonance condition, 

hence we can write the above expression for P(t)  as, 

where,   

Note, since the function under the integral is zero beyond a narrow range of x, hence the change 

in the integration limit from −∞  to +∞, is acceptable.  The above expression for P(t) can be 

further simplified to  

 (Refer Slide Time: 26:44) 

 

Starting from the above expression of the total transition probability, we can obtain the rate of 

change of the transition probability or the transition rate as,  



The above expression is known as the Fermi’s golden rule. The transition rate from an initially 

occupied state i to an initially empty state f, depends on two quantities, the transition matrix 

element Vfi and the density of states at the transition frequency𝜌(𝐸fi). This equation has a great 

practical application, because transition rate can be used to estimate the spectral intensity observed 

in a spectroscopic experiment.  

Thank you for your attention.  


