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Lecture 40: Slowly Switched Constant Perturbation 

Hello students! Welcome to this lecture. In the previous two lectures we have been discussing the 

time-dependent behavior of a quantum mechanical system. We first considered the systems where 

the Hamiltonian is time-independent and then considered the case where the Hamiltonian shows 

explicit time dependence. Before we proceed further in the present lecture, let us review some of 

the key results discussed so far.  

(Refer Slide Time: 01:06) 

 

When the Hamiltonian is independent of time, a state with precise energy is known as a stationary 

state. The stationary state associated with an eigenstate ψ𝑛 and energy 𝐸𝑛 is given by, 

The above state is called stationary state since the probability density of the state is independent 

of time, i.e., 

The stationary states are obtained as long as the state of the system has a precise energy. When the 

state of the system is described as a linear combination of several eigenstates of the system, and 
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hence an uncertainty in the corresponding energy, the corresponding probability density shows 

explicit time dependence. 

As can be seen, the second term in the above equation shows explicit time dependence. This results 

in the non-stationary state. Here the coefficients are given by the relation, 

Since the coefficients are determined from the initial value of the wave function (at time t0), the 

coefficients do not evolve with time, rather their values do not change from the values obtained at 

t = t0.  

(Refer Slide Time: 04:08) 

 

Now let us consider a case where the Hamiltonian has explicit time dependence. In that case, we 

considered the time dependent part of the Hamiltonian as a perturbation to the time independent 

part of the Hamiltonian, which was considered as the unperturbed system. We used this 

perturbation theory for a 2-state problem and obtained the Rabi formula.  
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The above relation shows the time-evolution of the population of the initially empty state (state 2). 

As can be seen, the population depends on the strength of the perturbation |V| and the energy 

difference between the two stationary states (ℏω12). We then considered two special cases. In the 

first case, we took the two stationary states as degenerate and obtained, 

which shows that the population of state 2 oscillates between 0 and 1, no matter how weak the 

perturbation is. We can select a particular configuration of the two states, by switching off the 

perturbation at a certain value of t. In the second special case, we considered the opposite scenario, 

i.e., the energy difference between the two stationary states is very large (as compared to the 

perturbation strength), i.e.,                        . For this case, we obtained, 

which shows that the population of state 2 oscillates between 0 and the pre-factor in the above 

relation. Maximum population of state 2 now depends on the strength of the perturbation as well 

as on the energy difference between the two states. It shows that a weak perturbation will lead to 

a marginal transfer of population from state 1 to state 2.  

(Refer Slide Time: 10:16) 

 

Next, let us extend our discussion to a multi-state system. The total Hamiltonian is divided into 

two parts: time-independent part (the unperturbed system) and the time-dependent part (the 
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perturbation). The solution of the unperturbed system results in n number of stationary states. The 

final state is expressed as a superposition of these stationary states, 

which follows the following time-dependent Schrodinger equation,  

By following the strategy similar to the 2-state problem, we obtain the time-evolution of the 

coefficient of the state k as 

where,                          represents the perturbation Hamiltonian matrix element between the 

stationary state k and n, whose energy difference is given by,  

 (Refer Slide Time: 14:08)  

 

The above equation shows that the time evolution of the state k depends on all stationary states of 

the system. To solve this particular equation, we can integrate both LHS and RHS time t = 0 to t,  

Before attempting to proceed with the above equation, let us make two approximations, i.e., let us 

assume the perturbation is weak and is applied for a short duration. This restricts our discussion to 

the first-order time dependent perturbation. When the perturbation is weak and is applied for a 

short period of time, the coefficients are not going to change drastically from their initial values. 

If at the start of the experiment, the system is in a state i, the coefficient ci = 1 while 𝑐𝑗≠𝑖 = 0. 
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This simplifies the summation to a single term,  

where, cf is the coefficient of the final state (initially empty) and ci is that of the initially occupied 

state. Furthermore, if the perturbation is weak and short, ci ~ 1,  

The above relation shows that the population of the final state can only arise from the initial state, 

but that we discard any indirect transition, say from i to j followed by j to f.  

 (Refer Slide Time: 22:17) 

 

Now, let us apply this information to a model problem where we apply a constant perturbation that 

is slowly turned on. The perturbation for such a system is given by, 

Here the perturbation is slowly switched on at time t and where k controls how fast the perturbation 

is switched on.  
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Applying the above perturbation on the results obtained in the previous slide, we have the 

coefficient of the final state,  

The integration of the above exponential functions is rather trivial. The population of the final state 

can be obtained from the relation,                       .  

In the above equation, there are three independent parameters, Vfi (the coupling strength), ωfi (the 

energy difference between the initial and final stationary states), and k (rate of switching on the 

perturbation). We would try to understand the effect of the strength and rate of perturbation as a 

function of the energy separation, or in other words, we shall consider the free parameters, Vfi/ωfi 

and k/ωfi and study their effect on population transfer by carrying out a few numerical exercises. 

The above diagram shows the population of the final state for three cases, when Vfi (or more 

precisely, Vfi/ωfi) is strong, moderate and weak. At long time scale, we see in each of the cases a 

steady population appears, although the exact value of the population depends on the strength of 

the coupling. At large values of t,  

where Vfi is essentially the matrix element between state f and state i coupled by the perturbation 

part of the Hamiltonian divided by ω𝑓𝑖, which is simply the difference between the energy of final 

state and energy of the initial state. This is reminiscent of the time-independent perturbation theory,  

 

This simply tells that if you switch on your perturbation slowly and you wait long enough (t >>), 

the time dependent perturbation theory essentially goes back to the time-independent perturbation 

theory.  
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(Refer Slide Time: 29:16) 

 

Next, we learn the effect of the rate of switching-on the perturbation on the population of the final 

state. For this, we keep a fixed value of Vfi and change k. From previous analysis, we know that at 

long time, the population becomes          . Hence, we express the population in the unit of           , 

such that at large values of t, the population approaches 1.  

For small k value (𝑘/ω𝑓𝑖 = 0.01), the population of the final state increases slowly but with very 

little oscillations or with very little transience. However, for 𝑘/ω𝑓𝑖 = 0.1, the rise of population is 

rapid and presence of transience is clearly noticed. The transience is prominent for even larger 

values of 𝑘/ω𝑓𝑖 = 0.5, as can be seen in the figure below. 
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In all the three cases, the strength of the perturbation is same. Hence, we observe the final 

population to be the same in all three cases. The only difference is that when we switch on the 

perturbation slowly, the population transfer occurs slowly with little transience. For a sudden 

change in the perturbation, the system behaves violently and the population gets quickly 

transferred, but in the presence of strong transience.  

The two numerical exercises combinedly teach us that, most time-dependent perturbations if they 

are introduced slowly and if we measure the system long after the perturbation has been switched 

on, we get the same result as we have for the time-independent perturbation theory. 

 Thank you for your attention. 
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