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Lecture 04
Exactly Solvable Models – I 

Hello students! Welcome to this lecture. In the previous lecture we discussed about the principles

and postulates of quantum mechanics and in this lecture would start looking at some exactly

solvable models in quantum chemistry. 

(Refer Slide Time: 00:43)

The first problem that we are going to discuss is the ‘particle-in-a-box’ problem. The particle in a

box problem is quite a relevant problem in chemistry. You can imagine it by considering an

electron confined to the nuclear environment in an atom or in a molecule. Consider an electron

experiences an infinitely high potential barrier to escape this box (i.e., the molecule). We can

define our potential  in this  manner.  Along x-axis, between x=0, and x=l, the electron or the

particle experiences zero potential and outside (i.e., x=-infinity to x=0 and x=l to x=+infinity),

the particle experiences an infinitely high potential. This creates a box between x=0 and x=l that

the particle can never escape. 



We want  to  solve  this  problem quantum mechanically.  The  first  step  is  to  write  down the

corresponding Schrödinger equation and to do that we require the definition of the Hamiltonian

operator. The Hamiltonian operator will have a kinetic energy contribution and some potential

energy contribution. 

Who can contribute to the kinetic energy? Whenever we have a particle which has got a mass

and which is moving with some velocity, it has a kinetic energy.  In the current problem, we

have  got  a  particle  (consider  mass  m).  The  corresponding  kinetic  energy  operator  can  be

expressed in terms of the momentum operator (px=iℏ
d
dx

), as px
2 / 2m=−(ℏ2 / 2m)

d2

d x2
. 

What  is  the  potential  energy?  In  the  system,  all  interactions  (such  as  interaction  between

particles, or interaction of particle with external field, etc.) contributes to the potential energy. In

particle-in-a-box problem, outside the box the potential is infinite and inside the box potential is

0. So, V takes a very simple form: it is either infinite or does not exist. 

With this Hamiltonian I can write down the corresponding Schrödinger equation. I am sure you

have already solved this equation in your earlier quantum mechanics course. We are not going to

derive  the  solution,  rather  we  are  going  to  use  the  results  (that  is  the  eigenvalues  and  the

eigenfunctions)

Apart from the constants (h = Planck’s constant,  m and l are constants for a specific problem),

we see that the eigenvalues and eigenfunctions depend on parameter  n (the quantum number)

that goes from 1, 2, 3 and so on so forth. 
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The eigenvalues or the energy has n2 dependence. The energy spacing (see the slide screenshot)

keeps on increasing for increasing n. The energy also depends on the mass and the length of the

box. When the mass is very large or the length is very large then you see the En value becomes

very small. When En itself becomes very small the spacing between two energy levels becomes

even smaller. This means, that when mass and length are very large the spacing between two

neighbouring energy value becomes negligibly small. So much so that the quantised nature of

these energy levels loses meaning and the energy levels appear continuous. That means when

mass is large, length scale is large, we are actually entering the classical realm. In classical world

there is no such quantization of energy level. It is a phenomenon that is strictly observed in the

quantum world. This is an example of quantum to classical correspondence.

Now let us consider the wave functions 

The  factor  under  square  root  is  the  normalization  constant.  Apart  from that  you see  a  sine

function that depends on the quantum number n (apart from other constants like, pi, x and l). In

the figure above, the wave functions for different values of n are plotted. You can observe that as

I consider larger values of n, I am trying to fit a greater number of periods of the sine function

into the same length of the box, which results in a greater number of nodes (places where the

wave function as well as the probability of finding the system becomes 0). 



It is a common feature that you would see in most quantum mechanical systems that higher

energy states typically correspond to a greater number of nodes. Now, in addition to the wave

function, we can also discuss the probability density of the corresponding eigenfunctions. 

So far, we discussed the case where the potential outside the box is infinite. So, outside the box

the wave function is always 0. That makes sense because the particle never escapes the box. But

that is true only when we have infinitely high wall, but if we have a finite barrier there is a

chance of leaking of the wave function or the tunnelling, where you would see that the wave

function  slowly  decays  outside  the  box.  Tunnelling  is  a  purely  quantum  mechanical

phenomenon. For a free particle, where V=0 everywhere, there is no boundary. 
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Now, let us look at another exactly solvable model, i.e., the harmonic oscillator. In chemistry we

can use harmonic oscillator in many cases. The harmonic oscillator model can be considered

wherever the system oscillates around an equilibrium position. If you have a system and you do

something to it and then it starts oscillating forward and backward around the original position or

the  equilibrium position,  that  is  a  system where  we  can  use  harmonic  oscillator  model.  In

chemistry where can we use? Consider a bond vibration.  From microwave spectroscopy, for

example, we can know the equilibrium bond distance. But then we also know that at a finite



temperature, the system undergoes internal motion along the normal modes of vibrations, which

can be probed by IR spectroscopy.  The atoms in a molecule show a harmonic movement around

their  equilibrium  position,  for  example,  a  bond  stretching  and  shrinking.  Hence,  molecular

vibration  is  a  popular  place  where  harmonic  oscillator  results  are  used.  In  fact,  we explain

infrared spectroscopy or vibrational spectroscopy by using the eigenfunctions and eigenvalues of

harmonic oscillator problem. 

In the harmonic oscillator model, we have a particle of mass m that goes around the equilibrium

position along x-axis. The motion can be towards the positive side or negative side of x = 0. The

potential is given as a harmonic oscillator potential (V=(1 / 2 )k x2=(1 / 2 )mω2 x2), where k is the

force  constant  corresponding to  the  harmonic  oscillator  with  the  angular  frequency (ω).   In

harmonic oscillator model, we have a soft potential that slowly increases from x=0. In case of

particle in a box, we had hard potential, which is either 0 or infinite. But both the models are

one-dimensional models involving a single particle. The kinetic energy has the same form as we

had in the particle-in-a box problem.

With  the  given Hamiltonian,  we can  write  down the  Schrödinger  equation.  The  solution  of

harmonic  oscillator  problem  is  perhaps  a  little  more  complicated  than  the  particle-in-a-box

problem. But nevertheless, it is rather straightforward. We are not going to do the derivation to

get  to  the results.  Instead,  we are going to  use the final  results,  i.e.,  energies  and the wave

function. 

Let us, first consider the energies. 

The energy depends on the frequency corresponding to the harmonic oscillator (ω), which is

going to be different for different systems. If you have a harmonic oscillator with very large

value of omega, the energy and the energy difference will be accordingly large. Apart from this,

the energy has n (quantum number) dependence. 
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Unlike particle-in-a-box where the minimum value of the quantum number n=1, here in the

harmonic oscillator case, the lowest value of the quantum number is n = 0, when the energy is

(1/2) ωℏ , also called the zero-point energy. Thus, the energy of the lowest state which is not 0.

But that means even when the system is in its ground state still has got some energy and that

energy  is  the  zero-point  energy.  Now,  as  I  use  higher  values  of  n,  the  energy  increases  (

(3 / 2 ) ωℏ , (5 / 2 ) ωℏ ,(7 /2) ωℏ  …  for  n = 1, 2, 3, … respectively. The separation between two

consecutive  energy levels  is  going be  ωℏ .  In  IR spectrum we observe  the  n = 0  to  n = 1

transition, so that the IR band appears at energy ωℏ . 

In harmonic oscillator all the states are bound states, that means no matter how much you distort

this system from the equilibrium position, either right-hand side or left-hand side, the harmonic

potential  remains  harmonic,  which  is  an  elastic  potential.  But  in  real  life  application  (bond

vibration,  for  example),  the  harmonic  oscillator  is  a  severe  approximation  and  we  often

incorporate  anharmonicity.  I  am sure  you  must  have  encountered  this  in  your  spectroscopy

course. 

Now, let us consider the eigenfunctions. The eigenfunctions of harmonic oscillator are slightly

more  complicated  than  the  eigenfunction  a  particle  in  a  box.  Before  we  introduce  the



eigenfunctions,  let  us learn about a transformation of the coordinate  x (which is actually the

displacement from the equilibrium position) to a dimensionless coordinate, 

 

Here,  m,ω are system specific constants. Normally, the harmonic oscillator eigenfunctions are

expressed in dimensionless coordinate, so that you can switch from one molecular system to

another molecular system and the expression remains the same, since the effect of the molecular

environment gets incorporated by m,ω in the relation.  

(Refer Slide Time: 18:42)

Now, let us look at this wave function ϕnlittle closely. The eigenfunction has got three parts. The

first one is An which is the normalization constant. In particle in a box problem the normalization

constant was simply √ (2/ l ), independent of n. But here, the normalization constant depends on

the value of n. The second term is the so called Hermite polynomial,  a very useful polynomial

popular in mathematics.  You can always find in most quantum mechanics  text books in the

appendix. The 0th order Hermite polynomial is simply 1. The first order Hermite polynomial is 2x



or 2 (is the dimensionless coordinate) and the higher order polynomials are given in the above

figure. The third component of this harmonic oscillator eigenfunction is the Gaussian function

(e−ρ
2 / 2

).  The Gaussian function is an even function but the Hermite polynomials polynomial of

order n is odd for odd values of n and even for even values of n. Therefore, the eigenfunctions of

harmonic  oscillator  have  definite  parity,  they  are  either  even  functions  or  odd  functions,

depending on the  value  of  n.  Having a  definite  parity  is  very useful  in  evaluating  different

properties of the harmonic oscillator. 

For n = 1, 2, 3, … as you go for higher n, you start seeing a greater number of places where the

wave function becomes 0, i.e., a greater number of nodes. For n = 0, no nodes, n = 1 you have

got one node and so on. 

The probability density |ϕn|
2 plots for different n are also shown.You can notice that for higher

values  of  n,  the  probability  builds  up  towards  the  sides  (the  boundary  region,  away  from

equilibrium)  of  the  harmonic  oscillator,  also  called  the  turning  points  (where  the  oscillator

retraces its path and comes back to the equilibrium to follow the opposite side of the trajectory).

This to-and-fro motion is restricted by the two boundary regions at the turning points. At those

turning points, we see the probability getting accumulated. This is again an important concept

that we often use in spectroscopy when we talk about vibronic transitions and the Frank-Condon

factors. 
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Now, before we go further looking for some other exactly solvable models, let us, discuss a very

important  operator  and  its  eigenfunction.  This  operator  is  the  angular  momentum  operator.

Where do we need angular momentum operator? Whenever a particle shows a motion along a

circular path, the angular momentum is better suited to describe the system. 

From classical mechanics we know that angular momentum is given by the cross (or vector)

product of r vector and the linear momentum vector, when the particle is moving around a circle

of radius r. We can write L⃗=r⃗ × p⃗. In that case we can obtain the three Cartesian components of

the  L operator that is  Lx,  Ly, Lz  (see the above figure). In addition to the individual Cartesian

components we also define the  L2,  L+ and  L- (the step-up and step-down operators). See their

definition in the above figure. 

The angular momentum operators are usually characterized by a very interesting commutation

relation. The three Cartesian components of the angular momentum operator that is Lx, Ly, Lz

do not commute with each other.  If two operators do not commute then we know that they

cannot have common eigenfunctions. So, that means if I know the outcome of Lx operator for a

particular system precisely, I cannot know the same for Ly, because Lx and Ly do not commute.

That  means  there  will  be some uncertainty.  Apart  from this,  we know that  these individual

components Lx, Ly, Lz they commute with L2 operator. Now, we have this interesting situation

where Lx Ly Lz they do not commute with each other but each of these component commutes



with L square. So, that means if consider one of these pairs, say, L2 and Lz, then you can see that

we can construct simultaneous eigenfunction of these two set of operators. 

The solution of angular momentum operator or the eigenfunctions of the angular momentum

operator are obtained as a common complete set of solution for  L2 and  Lz. What are they and

what are their properties? These are some of the things that we would discuss in our next class.

Thank you for your attention.


