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Hello students! Welcome to this lecture. In the previous weeks we discussed several quantum 

mechanical systems of varying size and complexity by using different approximate methods. In all 

our previous discussions, we have considered quantum mechanical systems without their time 

dependence.  In this, and the next few lectures, we are going to address the approximate methods 

for time-dependent systems.  

From the postulates of QM, we know that all the information of a system is there in the wave 

functions and we can estimate a particular property of the system by applying the corresponding 

QM operator on this wave function. Unlike other classical observables, time is not a property of 

the system (hence, no corresponding QM time operator), rather it is a variable like the coordinates. 

The properties of the system change with changing variable (such as, coordinates or time). In other 

words, the state of the system evolves in time.  
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The time evolution of a QM system is given by the next postulate of QM, also known as the time-

dependent Schrödinger equation (TDSE),  

In the above expression, the wave function has both spatial (x) and temporal (t) dependence. If we 

consider a separation of the spatial and temporal variables and express the wave function as,  

the TDSE becomes 

Since the space and the time are two independent variables, we can separate the two variables into 

two-sides of the equation to obtain 

If both sides are equal to each other, they both must be the same constants (say, E). Using this for 

the LHS, we obtain the time-independent Schrödinger equation (TISE), 

The RHS becomes, 

We have already spent quite some time on the spatial part of the problem, i.e., obtaining the wave 

function (𝜓(𝑥)) and the energy E, corresponding to the Hamiltonian. From the above exercise, we 

see that the temporal part of the total  wave function is merely 𝑒−𝑖𝐸𝑡/ℏ, which requires the energy 

E (the solution from the TISE).  
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From the above discussion, we have the total wave function as, 

If we evaluate the probability density, we obtain  

since, |𝑒−𝑖ω𝑛𝑡|
2

= 1. This renders the probability density to be independent of time. Furthermore, 

if we evaluate the energy expectation value, 

the result will remain independent of time, as shown above.  

For such states, where the probability density and the energy expectation value do not change with 

time are called the stationary state. Stationary means something that does not change. A stationary 

does not mean that the particles in the system do not move. It simply says that the probability 

density, the energy, have precise values.  

In the above discussion, the time factor f(t) used a precise value of energy En (the eigenvalue 

corresponding to the state 𝜓𝑛). Next we discuss the situation when the state is constructed as a 

superposition of several eigenstates, such that the energy of the state is not precise. 
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For a superposition of states, we can write down the TD-wave function as the following sum, 

Here, the coefficients of the expansion can be obtained as, 

Where t0 represents the initial time and hence the coefficients do not change with time. Since the 

coefficients reflect the composition of the states, it means that the composition of the state would 

remain unchanged with time.  

For this state, if we evaluate the proability density, we obtain 

The 2nd term in the above expression shows the time-dependence in the probability density. Hence, 

the state Ψ(𝑥, 𝑡), is a non-stationary state. Similarly, we can also show that the expectation value 

of different operators would also change with time. Note, the non-stationary states appear when 

the state of the system does not have a precise energy.  

 



(Refer Slide Time: 23:34) 

 

In the previous examples (either a pure eigenstate or a superposition of states), we maintained that 

the Hamiltonian is time-independent. However, in many cases we can have explicit time-

dependence in the Hamiltoinanian. In such cases, we can treat the time-dependent part of the 

Hamltonian as a perturbation to the rest of the (time-independent) Hamiltonian, i.e., 

Here, we assume that we know the solution of the time-independent part of the problem, i.e., 

and the total wave function can be written as, 

Before we apply the perturbation theory to this problem, let us consider a 2-state problem where 

the state of the system is given by, 

where, Ψ𝑖
(0)(𝑥, 𝑡) is the ith unperturbed state and the coefficients Ci(t) are the time-dependent 

amplitudes describing the overall wave function. Using TDSE for the above state, i.e., 

we obtain,  
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Rearranging the previous equation,  

The first two terms of the LHS and RHS are equal (from the TDSE for state Ψ1
(0)

 and Ψ2
(0)

 and the 

unperturbed Hamiltonian H0), which leaves us with 

Expressing the total wave function Ψ𝑖
(0)(𝑥, 𝑡) in terms of its time-independent part and the time 

factor (f(t)), we obtain 
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By multiplying ⟨ψ1
(0)

|, in both LHS and RHS of the above equation, we get  

Given the orthonormality of ψ𝑖
(0)

, the above relation simplifies to 

 

Where the Hamiltonian matrix elements                   = 

Similarly, if we multiply ⟨ψ2
(0)

| we would obtain, 

 

In the next lecture, we will learn how we solve the above set of equations for a 2-state problem.  

Thank you for your attention. 


