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The Density Matrix 

Hello students! Welcome to this lecture. After discussing HF-SCF theory followed by 

Hartree-Fock-Roothaan scheme, we have now formulated the N-electron problem in a 

matrix form. In this class, we will introduce the density matrix which plays a critical role 

in Hartree-Fock calculation.  

(Refer Slide Time: 01:26) 

 

If we express (spatial) orbitals ψ𝑎(𝑖) in terms of a basis θν(𝑖), i.e., 

 the Hartree-Fock equation becomes,  

The above set of equations can be converted to a matrix equation in the basis of θν(𝑖) 

Here F is the Fock matrix, S is the overlap matrix, and C is the coefficient matrix. 
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For a closed-shell system, the N-electron HF wave function is given by the Slater 

determinant in terms of N/2 spatial orbitals. The charge density for this system is given by 

the sum of the probability distribution function of the N/2 (spatial) orbital, multiplied by 2 

(electron occupancy), i.e., 

If we integrate the above equation over all space, we get the total number of electrons (N) 

 

Introducing Roothan’s basis to the charge-density equation, we obtain ρ(𝑟) as, 

 



In the last line, we defined a new matrix P (density matrix) in terms the Coefficient matrix 

C. The matrix elements of the density matrix are given by,  
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We know, in the basis of spatial orbitals, the Fock operator is given by 

Now let us formulate the Fock matrix by evaluating its matrix elements in the basis of the 

{𝜃υ}  

We can express the action of Coulomb and exchange operators on the basis functions as, 



 

The red/blue parts of the above two equations are the operators themselves that are defined 

in terms of (spatial) orbitals. Using the above definition of the Coulomb/exchange 

operators, the Fock matrix can be written as,  

 

The first term is the matrix element of the core Hamiltonian. 
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Expanding the spatial orbitals in terms of the basis functions, i.e., 

we can express the Fock matrix as, 

 



By removing the coefficients from the integration, we have 𝐹μν 

 

which can be expressed in terms of the density matrix as, 𝐹μν 

Here the shorthand notation (Θμ(𝑖)Θλ(𝑗)  =  μλ is used. The round brackets should remind 

that the basis functions are replacing the spatial orbitals.  
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The Fock matrix shown above has got 1-electron and 2-electron integrals.  The 1-electron 

integrals are given as, 

 

 



The 1-electron integrals have two terms: electron kinetic energy and electron-nuclear 

potential energy. Both these integrals are rather easy to evaluate, once the basis functions 

are defined.  

Now, let us discuss the two-electron integrals. The two-electron integral (𝜇𝜆|𝜈𝜎) can be a 

(up to) 4-centre integral, i.e., when these four basis functions are centered on four different 

atoms of a molecule. If our basis set has K basis functions, we can construct K4
 number of 

2-electron integrals (𝜇𝜆|𝜈𝜎). For a small molecule, say, with 5 atoms where each atom 

defined by 4 basis functions, thus making K = 20, can have 204 = 1,60,000 number of 2-

electron integrals. The evaluation of such a large number of integrals is quite expensive. 

However, we can immediately see that not all K4 integrals are unique. We can use 

permutational symmetry and show  

This relation reduces the number of unique integrals to K4/8. 

The computation of these 2-electron (4-centre) integrals are the most time-consuming part 

of a HF-SCF calculation. Several approximations and innovating ideas have been 

developed to make this part of the computation tractable.  
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Now since we know how to evaluate the Fock matrix and the overlap matrix, we can easily 

solve the (Hartree-Fock-) Roothan equation,   

Typically, the basis functions used are normalized but not orthogonal. In such a case, an 

orthogonalization of the basis can be carried out. The transformed (orthonormal) basis 

functions result in a transformed Fock matrix, where the Roothan Equation appears as 

eigenvalue problem.  

The solution of the above problem would give us the diagonal energy matrix (from the 

eigenvalues) and the expansion coefficients (from the eigenvectors). However, a careful 

observation will point out a problem. While constructing the Fock matrix, we used the 

following relation 

Here the Fock matrix depends on the density matrix (F(P)) and the density matrix is built 

from the expansion coefficient matrix (C), hence we need the coefficient matrix to build 

the Fock matrix, i.e., F(C). But the coefficient matrix is obtained from solving the Roothan 

equation! Hence, we have a non-linear problem that needs to be solved in a self-consistent 

(iterative) method.  
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From our previous lectures, we have seen how to express orbital energy (ϵ𝑎) and HF energy 

(EHF) in terms of the spatial orbitals: 

Now since we have expressed our integrals in terms of basis functions (within Hartree-

Fock-Roothan scheme), we would like to express the energy in terms of the basis functions. 

If we use the basis expansion relation in the last equation (the exercise is similar to the ones 

we used to get Fock matrix), we would obtain EHF as 

 

The above expression shows that the HF energy can be obtained from the core-Hamiltonian 

matrix, the Fock matrix, and the density matrix. We also know that we need the density 

matrix to get the Fock matrix. Hence, it appears that the density matrix is crucial in the 

solution of Hartree-Fock-Roothan problem.  

Thank you for your attention. 


