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Hartree-Fock Energy 

Hello students! Welcome to this lecture. In the last lecture we discussed about the Hartree-

Fock equations. In this lecture we will learn more about the Hartree-Fock energy. 

(Refer Slide Time: 00:51) 

 

For an N-electron system the Hamiltonian is composed of some 1-electron and 2-electron 

operators. The wave function of the N-electron system can be expressed as a Slater 

determinant defined in terms of N-orthonormal spinorbitals. The energy expectation value 

when the wave function is given by a Slater determinant is given by 

The first line is for spinorbitals (note the angular brackets) and the second line is for 

(spatial) orbitals after spin integration (note the round brackets). The first term corresponds 

to the core energy of an electron. The second term has two components: the Coulomb term 

and the exchange term.  
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 (Refer Slide Time: 04:30) 

 

In the variational formulation of Hartree-Fock SCF procedure, we wanted to find the best 

N-electron Slater determinant that minimized the energy while keeping the spin orbital 

orthonormal. By solving this constrained minimization problem (via Lagrange method of 

undetermined multipliers), we needed to solve the following equation 

After obtaining the first variation of the energy and the same of the internal product of 

spinorbitals, we arrived at the (non-canonical) HF equation: 

The above equation defines the Fock operator (ℱ̂) which is the sum of the 1-electron 

Hamiltonian, and the Coulomb operator (𝒥̂) and exchange operator (𝒦̂). 
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 (Refer Slide Time: 06:55) 

 

The noncanonical HF equation was converted to its canonical form by a unitary 

transformation of the HF spinorbitals. We showed that this unitary transformation retains 

the orthogonality of the spinorbitals, the Slater determinant N-electron wave-function 

changes by a phase factor, the expectation values do not change, the sum of the Coulomb 

operators and exchange operators, and thus the Fock operator, are invariant. Finally, we 

discussed that we can obtain the unitary matrix as the matrix that diagonalizes the Lagrange 

multipliers. This led us to the canonical HF equation. 

(Refer Slide Time: 11:38)  
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We started from the N-electron Hamiltonian 

and sought its solution  

However, what we have actually solved using the HF-SCF method is not the full 

Hamiltonian. Rather, by solving the HF equations we obtain a set of spinorbitals, 

 

which are used to generate the N-electron Slater determinantal wave function  

Since the Fock operator is an effective 1-electron operator, in a HF calculation the HF 

Hamiltonian can be expressed as,  

Compared to the real molecular Hamiltonian, the HF Hamiltonian lacks explicit electron-

electron correlation 

Note here that HF method is not an entirely uncorrelated method, rather it considers a 

partial treatment of electron correlation. However, conventionally the HF method is known 

as an uncorrelated method and the corrections in all post HF methods are known as the 

corrections due to electron correlation. 
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(Refer Slide Time: 15:59) 

 

The Hartree-Fock energy is defined as the energy expectation value when the state of the 

system is defined by the Slater determinant composed of the HF spinorbitals. For a Slater 

determinant (Φ) defined in terms of the HF spinorbitals {χ𝑎}={a}, the HF energy is given 

by, 

Please note, we also have another set of energies, (ϵ𝑎) that are defined as the eigenvalue of 

the Fock operator, i.e., 

This energy is popularly known as the orbital energy. Please note that sum of all the orbital 

energies is NOT the HF energy, i.e., 

The HF energy is the energy expectation value corresponding to the HF wave function. 

The orbital energy, on the other hand, is the eigenvalue of the Fock operator.  
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 (Refer Slide Time: 20:01) 

 

Now let us if there is any physical interpretation of the orbital energy. Consider an N-

electron HF wave function as 

Suppose, we ionize the electron from the spinorbital c. The resulting N-1 electron system 

can be expressed by the following wave function 

 

Now, let us evaluate the energy expectation value of this cationic system as 

Compared to the HF energy, the energy of the above cationic system can be obtained as 

following 

 

But we know that the energy in the left-hand side is essentially the negative of the 

ionization potential, i.e., 
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The above result is known as the Koopmans theorem which states that the ionization 

potential for removing an electron from an orbital is the negative of that orbital energy, 

thus giving a physical interpretation of the orbital energy. 

 (Refer Slide Time: 25:44) 

 

 

Now, we can do a similar exercise for the electron affinity. Consider that we have added 

an electron in orbital r of an N-electronic system. The wave functions of the corresponding 

N and N+1 electron system is given by, 

We can obtain the energy expectation value of the N+1 electron system and compare it 

with the HF energy to obtain, 

We have arrived at the 2nd Koopmans theorem that states the electron affinity of a system 

is the negative of the energy of that orbital where the extra electron is accommodated.  

While Koopmans theorem is quite useful in estimating the IP and EA of a molecule, one 

key limitation of the approach is that it is assumed that the orbitals of the N-electron system 
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can be used for N+1 and N-1 electron systems. While it is a good approximation for the IP, 

the EA is often poorly estimated from Koopmans theorem. For accurate treatment of IP 

and EA orbital relaxation is necessary. Nonetheless, Koopmans theorem provides an easy 

and effective tool for a reasonable estimation of the IP and EA with a reasonable 

computational cost.  

Thank you for your attention. 
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