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Canonical HF Equations 

Hello students! Welcome to this lecture. In the last lecture, we started our discussion on 

the Hartree-Fock self-consistent field method. We were in the middle of formulation of the 

HF-SCF method as a variational problem.  We will continue our discussion from there. 
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Our overall objective was to find the Slater determinant that minimizes the energy 

(expressed as a functional of the Slater determinant Φ), while keeping the spinorbitals 

({χ𝑎} or {𝑎}) orthonormal. Such a constrained minimization was carried out by adopting 

the Lagrange’s method of undetermined multipliers. We defined the Lagrange function  

 

Here, λ𝑎𝑏 are the undetermined multipliers. For the constrained minimization, we expect 

the first variation of the Lagrange function to be come zero. To that end, we need to satisfy 

 



where we have already determined (from previous lecture), 

and 

 

Here cc represents the complex conjugate. 
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Using the above two expressions, the first variation of the Lagrange function can be 

expressed as 

Let us now express the above equation by writing them down in their integral forms: 

 

If we define the above shaded regions as Coulomb operator (𝐽𝑏̂)and exchange operator (𝐾𝑏̂) 

as following,  



The first variation of the Lagrange function then simplifies to  
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In the above expression, the first variation of the Lagrange function (𝛿ℒ) will become zero 

when the terms shown explicitly and the corresponding complex-conjugate terms become 

zero independently. Hence, we can drop cc from the above equation. The above expression 

of the 𝛿ℒ involves a summation over the spinorbitals (a). For 𝛿ℒ to become zero, the above 

expression must be zero for each spinorbital. Hence, the summation sign can be dropped. 

This leaves us with the terms within the integral sign. We can further simplify the above 

equation, by requiring the terms in the square brackets to become zero. This results in the 

following relation, 

The operators in the left-hand side (within the square brackets) are known as the Fock 

operator, which consists of 1-electron core Hamiltonian operators and the Coulomb and 

exchange operators. Since the Fock operator is an energy operator, we can express the 

undetermined multipliers λ𝑎𝑏 as some energy values ϵ𝑎𝑏.  



The action of the Fock operator (ℱ̂) can be expressed as,  

The above set of equations are called the Hartree-Fock equations, more accurately, the 

noncanonical Hartree-Fock equations. We call them noncanonical because the above 

equation does not represent a standard eigenvalue problem (notice that the 

functions/spinorbitals in LHS and RHS are different).  
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Next, we discuss how to express the Hartree-Fock equations in a canonical form. This can 

be achieved by carrying out a unitary transformation of the HF spinorbitals. In other words, 

we obtain a Unitary matrix (U) that transforms the noncanonical HF spinorbitals to a 

different set of spinorbitals, i.e., 

Here the unitary matrix (𝑈+𝐔 = 𝟏) preserves the orthonormality of the spinorbitals even 

after the transformation. 

 

 



By carrying out this unitary transformation, we are preparing a new set of transformed 

spinorbitals (χa
′) from the (noncanonical) HF spinorbitals (χa),  
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Using the transformed spinorbitals, we can write down the corresponding Slater 

determinant as following  

 

The transformed Slater determinant (ΦSD’) is related to the (noncanonical) HF Slater 

determinant (ΦSD) as following  

Since U is a unitary matrix,   

 

This means Φ′SD is related to ΦSD via a phase factor (𝑒𝑖ϕ). 



If we evaluate any expectation value of any operator using the Slater determinant wave 

function, we can see that the expectation value will not change (or remain invariant) if we 

take ΦSD or the transformed Slater determinant Φ′SD. Hence, the expectation value is 

invariant to unitary transformation of the spinorbital.  
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If you recall our earlier discussion, you would realize that the definition of the Coulomb 

operator and the exchange operator involves the spinorbitals. If we transform the 

spinorbitals, we need to see how that affects these operators. Let us define the Coulomb 

operator in the basis of transformed spinorbitals 

where the transformed spin orbitals are related to the original spinorbitals and the Unitary 

matrix, 

 

 

 

 



Using the above relation in the definition of the Coulomb operator, we obtain 

Since U is a unitary matrix, the only the diagonal matrix elements of 𝐔+𝐔 are 1, while all 

off-diagonal elements are zero. Hence, (𝐔+𝐔)𝑏𝑐 = 𝛅𝐛𝐜.  At the end of the above exercise, 

I see that the sum of the Coulomb operators is invariant to the unitary transformation of the 

noncanonical spinorbitals.   
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Similarly, we can also show that the sum of the exchange operators is also invariant to 

unitary transformation, i.e., 

In that case, the Fock operator itself is invariant to the unitary transformation.  
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Although we have seen that the unitary transformation leaves the Fock operator invariant, 

we still do not know two things, namely, what is the effect of unitary transformation on the 

Lagrange multipliers and how to obtain the unitary matrix. We will discuss them now. 

We have the following non-canonical HF equation, 

If we multiply ⟨χ𝑐| both sides of the above equation we get (using the orthonormality of 

the spinorbitals),  

 

 



Now, let us find out the effect of unitary transformation of the spinorbitals on the Lagrange 

multipliers, i.e.,  

In the second line of the above equation, we have used the definition of the transformed 

spinorbitals in terms of the original spinorbitals and the unitary matrix. In the last line we 

have the used Fock matrix element ⟨χ𝑐|ℱ̂|χ𝑑⟩ = ϵ𝑑𝑐. 

The expression ϵ’𝑎𝑏 = ∑ 𝑈𝑐𝑑
∗

𝑐,𝑑 ϵ𝑑𝑐𝑈𝑑𝑎 can be written down in the matrix form as  

 

Where 𝛜 and 𝛜′ are the Lagrange multiplier matrices before and after the unitary 

transformation. The above relation also tells us how to obtain the unitary matrix. We can 

see that the unitary matrix is the one that diagonalizes the Lagrange multiplier matrix 𝛜. 

The transformed Lagrange multiplier matrix 𝛜′ is now a diagonal matrix. 
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At the end of this exercise, we can now write the non-canonical and canonical HF equations 

as following 

 

The canonical HF equation is an eigenvalue problem, where the transformed spinorbitals 

are the eigenfunctions of the Fock operators with eigenvalues of ϵ’𝑎.  

Since for most practical purposes we will use the canonical form of the HF equation, we 

can drop the prime symbols in the canonical HF equation and write ℱ̂|χ𝑎⟩ = ϵ𝑎|χ𝑎⟩ as the 

HF equation.  

Thank you for your attention.  


