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Hello  students!  Welcome  to  this  lecture.  In  the  last  lecture  we  were  discussing  some

postulates of quantum mechanics. We saw what are the experimental results that classical

physics could not explain and how and where quantum mechanics came as a saviour to save

the day. After the progress of quantum mechanics we decided that we should formulate the

language and the basic understanding of quantum mechanics in form of some postulates. This

is what we are discussing. 

 (Refer Slide Time: 01:04)

In the last lecture we went through the first three postulates. I will briefly remind you. The

first  postulate  of quantum mechanics  suggested that  whatever  you want  to  learn about  a

quantum  mechanical  system,  there  exists  this  so-called  wave  function,  which  contains

everything  that  you  possibly  want  to  know about  the  system.  We represented  the  wave

function as ψ ( x ,t ), which is a function of the spatial coordinates (x) and temporal coordinate

(t).  

The first postulate told us about the wave function and the second postulate said that for

every classical observable that you were interested in,  there exists a quantum mechanical



operator.   If  you want  to  observe,  say,  position  or  momentum or  energy  you  bring  the

corresponding quantum mechanical operator. We typically signify an operator with a hat. 

The third postulate said while you have the operator and you have the wave function, but

what are the observables, what are the outcomes of measurement? That answer is given by

the third postulate. It says that whenever you make any measurement corresponding to any

observable, that means you are operating the corresponding quantum mechanical operator,

the only allowed observables are the eigenvalues of that operator. Hence, it is very important

to know the eigenvalues and eigenfunctions of different quantum mechanical operators. The

consequence of postulate 3 is that since the outcome of measurement is the eigenvalue of the

operator, therefore the quantum mechanical operators must have real eigenvalues. 

(Refer Slide Time: 02:48)

When we impose this condition that the eigenvalues of the quantum mechanical operators

have to be real, then we come to the mathematical formulation that the quantum mechanical

operators that correspond to classical observables are Hermitian operator. When we say a

Hermitian operator, we should keep in mind that for any Hermitian operator the following

rule is followed

For Hermitian operators, we have got two beautiful properties: the eigenvalues are real, and

their eigenfunctions form a complete set of orthonormal eigenfunctions. If I have hundreds of



eigenfunctions of this Hermitian operator, each eigenfunction is going to be orthogonal to

every  other  eigenfunction.  A set  of  eigenfunction  ψis  forms a  complete  set,  when I  can

express any arbitrary function ϕ,as a linear combination of ψi s .The coefficients of the linear

combination ci are given by the overlap of function of ψi with the arbitrary function ϕ. 

If you remember we asked this question, related to postulate 3.  We said that postulate 3 says

that  when  you  make  a  measurement,  the  only  allowed  value  of  the  observables  are  the

eigenvalues of the operator. That means if the state of the system is an eigenfunction of the

operator, of course I understood that the outcome will be the eigenvalue. We can ask, what if

the state of the function is not an eigenfunction of this operator, then what? 
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But before that we must equip ourselves with the next postulate, which gives an idea about

the expectation value of the measurement or the outcome of a measurement. Postulate 4 tells

us that if you have a state of the system, which is described by a normalized wave function in

this  case  it  is  called  ψ,  then  the  average  value  of  this  observable  corresponding  to  this

operator A is given by,

That means if I prepare millions of copies of my system and make the measurement related to

an operator A on each system, and then I took the average value of the outcome, I would get

the expectation value given in the above equation. Whenever I am looking for an average

value, that means I would see that there is a distribution. For example, let us say that there are

three people whose age is 23, 23, and 20. The average age becomes 22. Note, that the average

age of these three people's age is 22, although none of them are 22 years old. It is just an

arithmetic average. This often appears, that the average value of a measurement may not be

an eigenvalue, but each measurement will give one eigenvalue as outcome.

How can we use postulate 3 to answer the question that we asked? For example, there can be

two situations: 1. If the state of the system is an eigenfunction of the operator,

I can write down the above equation. So, the expectation value of the operator A would turn

out to be a, which is the eigenvalue of A for the normalized eigenfunction  ψ . That means

expectation  value  or  the  average  value  of  my  measurement  is  a,  the  corresponding

eigenvalue. 

Since  the  state  of  the  system  is  an  eigenfunction  of  this  operator,  the  outcome  is  the

corresponding eigenvalue and I get only one possible value. This is the simple case. Now let

us see when the state of the system is not an eigenfunction. Suppose in that case, the state of

the system is defined by ϕ, now I know that the state of the this is not an eigenfunction of

operator A but I am interested in finding the expectation value. 



I  know that postulate  4 tells  me that you I  can express  ϕ as  a linear  combination of the

eigenfunctions of A, ψis. 

I am expressing the wave function in bra and ket as two expansions with coefficients ci and cj.

When I evaluate this integral, you see that the operator acts on the ket, which is written as a

summation. There are many terms, but it does not matter because each term has psi_1, psi_2,

etc. and they are the eigenfunctions of this operator  A  with eigenvalues  a1,  a2,  a3, etc. We

brought all constants, the eigenvalues and the coefficients, out of the integral. Now, we see

that this integral is the typical orthonormal condition of the eigenfunction, so therefore this

integral will vanish every time i is not equal to j and would survive only when i equals j. So,

when I simplify this term, I would find the final result as shown above. 

It tells that if the state of the system is not an eigenfunction of the operator then I am still

going to get the eigenvalues as the observable. It is only that I get a particular eigenvalue with

a certain probability (|c i|
2). That means, if I make 10,000 copies of this system and make

10,000 different experiments corresponding to operator A, I am going to get 10,000 different

values, but every time I would get one of these eigenvalues of the operator  A.  At the end

when I calculate the average value, of course I would get the arithmetic average but each

individual experiment is going to give me an eigenvalue of the system, and nothing other than

the eigenvalue.
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Now, let us go ahead with our discussion with a very interesting property of operators, i.e.,

the commutation of two operators. Let us state this general statement that if two operators A

and B have a common complete set of eigenfunctions then the operators A and B commute. 

Mathematically when I say two operators commute I simply say that AB = BA, i.e., the order

of operation of action of operators A and B does not matter. And if commutation of A and B is

not equal to 0 then in that case the two operators do not commute. Now, the theorem states

that  if  there are  two operators  who commute  then they have a common complete  set  of

eigenfunctions. We have already understood what is a complete set of eigenfunction,  i.e.,

with  a  complete  set  of  eigenfunction  I  can  express  any  arbitrary  function  as  a  linear

combination of this complete set of eigenfunctions. The new phrase is common.  That means

the  same complete set of eigenfunction is now simultaneously eigenfunction of operator  A

and of operator B. When is that possible? That is possible when A and B commute. 

Let us consider this example when they actually commute. They have common complete set

of eigenfunctions. So, suppose  \{ψ i \} form a complete set of eigenfunctions. If operator  A

acts  on one of  these eigenfunctions  ψi  I  will  get  ai,  since the state  of  the system is  an

eigenfunction of the operator A. Therefore, the outcome of this measurement is going to be

one eigenvalue, there is no distribution here. Now, since  A and  B commute, therefore  ψi is

also  an  eigenfunction  of  operator  B.  So,  when I  act  B on  ψi I  get  bi as  the  eigenvalue

corresponding to operator  B.  This is simple case because both the operators commute,  so

therefore they have common complete set of eigenfunction. If I operate A I get exact value ai,

if I operate B I get exact value bi. 



Now, come to the situation where A and B do not commute, in that case let us say I prepared

my system  ψi,  which  happens  to  be  an  eigenfunction  of  operator  A.  Hence,  when  I  act

operator A I get the result as ai.  When A and B do not commute, if I operate operator B on

this ψi what should I get? Remember, ψi is not an eigenfunction operator B. 

There is no problem because I know I can express this  ψi(an arbitrary function) as a linear

combination of the eigenfunction of operator  B. So, now what I am saying do not worry if

operator B does not commute with A. The eigenfunctions of A are not the eigenfunction of

operator  B,  but  operator  B can  have  its  own eigenfunctions,  call  them  ϕ j and  since  the

operator B is a Hermitian operator,  ϕ j also form a complete set of eigenfunctions. And we

can express ψias a linear combination of \{ϕ j \} .

When such a situation occurs, what would be the result? We already know, the outcome is

going to be bj, since every measurement will give one of the eigenvalues. But what would be

the probability of observing this? 

Now, you see when I make operation A on this system the outcome is simple ai. But when I

make measurement corresponding to B, I do not have this simple case of observing a single

eigenvalue rather I have this complicated situation where I get many possible values b1, b2,

….,  with  different  probability.   Instead  of  getting  a  single  value,  I  am  going  to  get  a

distribution of values. Now, when I get a distribution of value, then you can imagine that I

can have an average value, I can have a most probable value, I can also have a standard

deviation.  Hence,  there is  an  uncertainty in the outcome of this  measurement.  Now, you

would see that if two operators A and B commute, then there is no uncertainty, because in

both cases I get a single eigenvalue (ai and bi), both A and B operator have precise values. 

But when A and B do not commute,  if I decide to get operator  A outcome precisely,  the

action of operator B on the system will give me a distribution of bj’s. That means, I will get a

range of eigenvalues. So, there will be a distribution and there will be uncertainty. When two

operators do not commute, they do not have common complete set of eigenfunctions. The

consequence  of  that  is  that  there  is  an  uncertainty  in  measuring  both  the  operators

simultaneously and precisely. 



Since,  [ x , px ]≠0,  there  is  the  famous  position  momentum  uncertainty.  If  two  operators

commute, then there is no such uncertainty relation. 

(Refer Slide Time: 24:04)

So far, we have looked at some of the postulates and the principles of quantum mechanics.

Now, we will use this knowledge to discuss some exactly solvable models. Remember, we

said that there are only a few simple systems that we can exactly solve. Most systems that are

of chemical relevance are too difficult for an exact solution of its Schrodinger equation. So,

let us now first try to understand what are these exactly solvable models. We will not do the

derivation of the results rather we will just discuss the results of those models. 

The first system is a particle in a box. A particle in a box is a widely used model that has got

great chemical relevance. A particle in a box model in chemistry can represent a molecule. A

molecule is composed of many electrons that are confined to the nuclear environment of the

molecule. So, if a molecule exists at one place, all electrons of this molecule exist somewhere

within the nuclear framework of that molecule. We can also say that the electron of these

molecule is certainly not present at a far-off place. Why? That is because the electrons cannot

simply escape the molecular environment (unless of course we ionize the molecule). But if I

have a sample system, I know that the electrons are confined to their molecular environment

that  means the electrons  (or particles)  are experiencing a huge potential  that  they cannot

easily escape, as if they are in a box. Hence, particle in a box. The box is the molecular



environment. Within the molecule, of course the electrons can get delocalized. If we consider

conjugated pi-systems, then the electron delocalization is very facile. 

In this case the electron can perhaps move around the molecular  environment,  but it  can

never  escape.  So,  as  if  electron  is  experiencing  an  infinitely  high  barrier  to  escape  the

molecular  environment.  But  this  barrier  is  not  necessarily  always  infinitely  high.  For

example, we know if two reactants are brought together, they react and they form a product.

When the reaction occurs, there can be a transfer of electron. In those situations, the electron

can  move  away  from its  molecular  environment.  Here,  the  electron  experiences  a  finite

barrier to escape the molecular environment (particle in a potential well). This barrier can be

made infinite, that is an ideal system, where it can never escape or this barrier can be made

zero,  in  the  sense  that  there  is  no barrier  and the  electron  is  a  free  particle  (an  ionized

electron). 

So, now by playing with different values of V the barrier for the electron to escape this box

we can have particle in an infinitely high wall or we can have particle trapped by a finite

barrier or we can have a free particle. 

Whenever we have a quantum mechanical problem the first step of the solution is to write

down the operator,  in this  case the Hamiltonian.  The Hamiltonian  operator,  which is  the

operator for energy can have contribution from kinetic energy or potential energy. I have got

a particle with certain mass and it has got its kinetic energy, given by / 2m. In addition, it

would also have the potential energy (V), which can be a function of x, the dimension of the

box. We consider that the particle experiences 0 potential within the box, between length 0

and l, and it experiences infinite potential outside the box. 

We have written down the Hamiltonian and we will discuss the results of this problem in our

next class. Thank you for your attention.


