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Self-Consistent Field Method 

Hello students! Welcome to this lecture. So far, we have looked at two different 

approximate methods, variational principle and perturbation theory. In today’s lecture, we 

will discuss yet another approximate method using which we would try to solve N-electron 

systems. The name of this method is the self-consistent field method. 
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Before we generalize it to larger systems, let us first keep our discussion restricted to a 

two-electronic system, the helium atom. The Hamiltonian of He atom has got two one-

electron operators corresponding to each electron and one two-electron operator.  

 

We have treated He atom with both variational and perturbation theory. In case of 

variational method, we made a guess trial function and tried to minimize the energy. In 



perturbation theory, we expressed the two-electron operator as the perturbation and 

obtained 1st order energy correction using the perturbation Hamiltonian and unperturbed 

wave functions. In the self-consistent field (SCF) method, we take a different approach to 

arrive at the final solution.  

Let us consider the following Hartree product  

where the 𝜒𝑎(1) and 𝜒𝑏(2) are two 1-electron spinorbitals. We can write down the 

probability density distribution related to electron in 𝜒𝑏 spinorbital as, 

If we multiply -e to the above expression, it would result in the electron charge density 

corresponding to electron 2. This electron charge density can interact with electron 1 

through Coulomb interaction as following, 

 

Where, r12 is the inter-electron distance. The above expression is in atomic units (e = 1 au). 

U1
eff is effective electron-electron interaction experienced by electron 1 due to the charge 

density of electron 2. U1
eff

 is a 1-electron operator with explicit dependence on electron 1, 

since the dependence on electron 2 is integrated out in the above expression. Now, the 

Hamiltonian corresponding to electron 1 can be written as,  
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Similar to the effective 1-electron Hamiltonian (H1
eff) for electron number 1, we can also 

construct (H2
eff) using the charge density of electron 1 and its interaction with electron 2, 

i.e., 

 

Since both H1
eff  and H2

eff are 1-electron operators, in principle, we can solve the following 

equations, 

 

The above two equations appear as standard eigenvalue problem, but there is something 

very interesting hidden there. The solution of the 1st equation gives us χ𝑎(1) and ϵ𝑎. To 

solve the 1st equation, we need H1
eff which depends on U1

eff and which in turn depends 

χ𝑏(2). How do we get, χ𝑏(2)? We get it from the solution of the 2nd equation. But to solve 

the 2nd equation, we need to know U2
eff which requires us to know on χ𝑎(1).  

This leaves us in a tricky situation where we need to know the solution (𝜒𝑎(1)) before we 

can start solving the problem (H1
eff). Such a problem can be solved by adopting an iterative 

method or in a self-consistent manner. In this approach, we first make a guess for 𝜒𝑎(1) 

and 𝜒𝑏(2); then construct H1
eff and H2

eff ; then solve the 1-electron operators to obtain 

𝜒𝑎(1) and 𝜒𝑏(2). We then use these functions to construct effective Hamiltonian and 

repeat the entire process. The process is repeated until convergence, i.e., until the old set 

of 𝜒𝑎(1) and 𝜒𝑏(2) and new set of 𝜒𝑎(1) and 𝜒𝑏(2) are the same. This approach is called 

self-consistent field method.   
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Now, we can generalize the process for N-electron system. In the schematic diagram above, 

the blue dots represent the central nucleus (or collection of nuclei in a molecule) and the 

red dots are electrons. We start with a guess for all spinorbitals {χ𝑎(𝑖)}. We consider 

electron 1 as a particle and the rest of the N-1 electrons as a field (shown by the yellow 

shade in the circle). Similarly, we treat electron 2, 3, ….N-1. In each case, we consider one 

electron as a particle and the rest as charge cloud. We solve each of these effective 1-

electron operators and obtain a new set of spinorbitals {χ′𝑎(𝑖)}. We repeat the process with 

the spinorbitals {χ′𝑎(𝑖)} and obtain a new set of spinorbitals {χ′′𝑎(𝑖)}. This process is 

repeated until we observe no change in the spinorbitals of iteration n and n+1. In such a 

case, we consider the final spinorbitals as the converged set of spinorbitals. 

Compared to variational principle and perturbation theory, the SCF method is quite 

different in its approach to obtain the wave function and energy of an N-electron system. 

This approach was first proposed by Hartree. Hence it is also known as Hartree’s SCF 

method. Slater and Gaunt translated this concept to real system and formulated this 

approach in the language of variational principle. One limitation of Hartree’s initial 

approach was to consider the Hartree product as the N-electron wave function.  



(Refer Slide Time: 20:10) 

 

Slater and Fock carried out Hartree’s SCF method by using the Slater determinant instead 

of Hartree product as the N-electron wave function. This approach (where Slater 

determinant is used as the N-electron wave function) is called Hartree-Fock SCF. Next 

important step is to formulate the SCF approach as a variational method. Here the target of 

an SCF calculation is to find the best N-electron determinantal wavefunction (using 

variation method) that gives the lowest energy (for a given nuclear configuration) while 

making sure that the spinorbitals remain orthonormal. The nuclei are kept frozen since we 

are working within the Born-Oppenheimer approximation.  
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Now the task in hand is to obtain a variational formulation of the Hartree-Fock SCF, i.e., 

to find out the Slater determinant that minimizes the energy while retaining the 

orthonormality of the spinorbitals.  

Let us consider the following N-electron Slater determinant in terms of the set of 

orthonormal spinorbitals {χ𝑎}, 

 

Where  

The energy expectation value corresponding to the above Slater determinant is given by, 
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Next step is to minimize the energy. Here, the energy is a function of the Slater determinant 

𝐸(Φ), and the Slater determinant is a function of the spinorbitals Φ(χ𝑎). Hence, the energy 

is a function of a function of the spinorbitals, i.e., E(Φ(χ𝑎)). In other words, the energy is 



a functional of the Slater determinant, denoted by 𝐸[Φ]. To minimize energy with respect 

to the Slater determinant, we need to carry out the so-called functional variation. 

For a small change in Φ, i.e., Φ → Φ +  δΦ, the energy changes as following 

 

The second term 𝛿(𝐸[Φ]) is known as the first variation (similar to first derivative). Since 

we aim to find that Φ which minimizes the energy, for the minimum energy Φ, the first 

variation must vanish, i.e., 𝛿(𝐸[Φ])  =  0. 

Another important thing to keep in mind that we not only want to minimize the energy, but 

while doing so we must preserve the orthonormality of the spinorbitals. This minimization, 

therefore, is not an ordinary minimization, rather minimization with a constrain. In this 

case, the constrain is 
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Now, we will discuss a technique for constrained minimization, using the poplular 

Lagrange’s method of undetermined multipliers technique. If we want to carry out an 

ordinary minimization of a function f(x), we will ensure δ𝑓(𝑥) = 0.  If we have an 



additional constrain (g(x)=0) while doing the minimization, we need to define a new 

function (Lagrange function) 

and ensure  

Here, λ is the undetermined multiplier.  

In the HF-SCF case, the function to be minimized is the energy expectation value, i.e., f(x) 

= E, where 

 

The constrain (g(x) = 0) is 

 

Hence, the Lagrange function is  

 

 

(Refer Slide Time: 34:53) 

 

 



For this constrained minimization problem, we need to have  

In other words, 

 

Here, λ𝑎𝑏 is the undetermined multiplier. Since δ𝑎𝑏 is a constant (either 1 or 0), we have 

the following equation to solve, 

 

The first term is the first variation of the energy and the second term is the first variation 

of the overlap integral. 
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Let us first consider the first variation of the energy, i.e., 

 

if we expand all the terms we get,  

 

 



If you look carefully, you would find that the 1st two terms (in the 1-electron integrals) are 

complex conjugates of each other. Now, let us look at the 4 terms within the Coulomb 

integral. The 1st and 3rd as well as the 2nd and 4th terms (in the Coulomb integral) are 

complex conjugates of each other. The first two terms within the sum are equivalent and 

so are the last two terms. Multiplying these terms with ½ further simplifies the Coulomb 

integrals. Similar simplification can be done for the 4 exchange integral terms. At the end 

of this exercise, we obtain δ𝐸 as 
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For the constrained minimization, we need to solve the following equation   

 

We have already obtained the first variation of energy (E) and now we can obtain the first 

variation of the constrain condition (orthonormality of the spinorbitals), i.e., 

 

  



In this lecture, we have formulated the variational treatment of the HF-SCF approach. We 

will continue our discussion in the next lecture. 

Thank you for your attention. 


