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Hello students! Welcome to this lecture. In our previous lectures, we discussed how we 

can use approximate methods to describe multi-electron systems. In this lecture, we will 

extend our discussion and try to generalize the form of the wave function for multielectron 

atoms or molecules. 

(Refer Slide Time: 00:57) 

 

Before we do that, let us refresh our memory of our last discussion on the excited states of 

helium atom. The two excited states obtained from 1s12s1 electron configuration are shown 

above (3S and 1S). Similarly, we can also write the wave functions for the 3P and 1P states 

that appear due to 1s12p1 electron configuration. We expressed the anti-symmetric (with 

respect to electron exchange) wave functions of these 2-electron states in terms of the Salter 

determinants. Next, we will try to generalize this result and see how we can write anti-

symmetric wave functions for a multielectron system. 

 

 

175



(Refer Slide Time: 03:42) 

 

Let us consider a 3-electron system (Li atom or any 3-electron molecule). We can define 

the 3 electrons in three 1-electron functions (orbitals) f, g, and h. We can generate one wave 

function as  

To enable electron indistinguishability, we can do exchange of electrons by using some 

permutation operators, such as, 

 

The above set of 6 functions form a complete set that can be used to describe the molecular 

wave function (ϕ) as 

 

The above function needs to be antisymmetric with respect to electron exchange. We can 

achieve this by choosing the values of the coefficients. For example, ψ1 and ψ2 are related 

to each other with the permutation operator P2. When we exchange electron 1 and 2, the 

total wave function must become anti-symmetric and for that to happen we would have c2 

= - c1.  Similarly, we can show that the following relations should also hold for the total 

wave function to be antisymmetric,  
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This leads to the final form of the wave function as  

 

The unknown coefficient c1 can be obtained from normalization of the wave function.   

(Refer Slide Time: 11:15) 

 

Let us now normalize the wave function.  

 

In the second line, each of the six integrals gives 1 (since the functions ψ𝑖′s are orthonormal 

functions). The normalization constant (=c1) turns out to be 1/√6. This value of the 

normalization constant appears because we had 6 possible functions taking care of electron 

exchange. If we had N electrons, we would have had N! number of functions considering 

all possible electron exchange. In such a case, the normalization constant would have 

become 1/√𝑁!. 
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(Refer Slide Time: 13:49) 

 

After normalization, our wave function (which ensures electron indistinguishability and is 

antisymmetric with respect to electron exchange) appears as  

 

Where,  

  

 

 

With a little bit of additional work out, we can express the wave function as the following 

determinant (Slater determinant) 
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There are a few notable features in this Slater determinant. Each row corresponds to one 

particular electron (first row for electron 1, second row for electron 2, and so on). Each 

column represents a spinorbital (spatial orbital together with its spin identity), e.g., first 

column for spinorbital f, second for spinorbital g, and so on.  Since the rows and columns 

follow a particular pattern, we do not need to write the full 3x3 Slater determinant. We can 

express it in shorthand form without losing any information. For example: 

 

From the last expression (which is expressed in a single line by writing down the diagonal 

terms alone), we can easily reconstruct 3x3 Slater determinant, just by remembering that 

each row corresponds to one electron and each column corresponds to one spinorbital. 

Expressing the wave function as Slater determinant has got some additional advantages. 

For example, if we interchange any two rows (equivalent to exchange of two electrons), 

the determinant becomes negative of itself. In other words, by design, the Slater 

determinant ensures antisymmetric electron exchange. If we make any two columns equal 

(equivalent to putting two electrons to the same spinorbital), the determinant becomes 0. 

Hence, Slater determinant, by design, obeys Pauli’s exclusion principle. 

 (Refer Slide Time: 22:36)  

 

179



Now let us discuss an N-electron system, with {ψ𝑖(𝑟)} representing a complete set of 

orthonormal spatial orbitals. Incorporating spin identity (by using the complete set of 1-

electron spin eigenfunctions α(ω) and β(ω), we express the spinorbitals (χ(𝑥)) as 

following,  

 

Here, the coordinates x include both spatial (r) and spin (𝜔) coordinates.  

(Refer Slide Time: 28:40) 

 

From a set of K spatial orbitals {ψ𝑖(𝑟)}, we constructed 2K number of spinorbitals χ(𝑥), 

half of which represent α spin and the other half β spin (characterized by an overbar).  

 

For χ2𝑖−1(𝑥) and χ2𝑖(𝑥), the spatial orbital is the same (ψ𝑖(𝑟)). They differ only in terms 

of the spin functions.  

We can easily show that the 2K number of spinorbitals form an orthonormal set,  
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If the two spinorbitals correspond to two different spatial orbitals, then they are orthogonal 

to each other (due to spatial orthogonality) and if they correspond to the same spatial orbital 

but carry different spin identity they are orthogonal (spin orthogonal). Either way, two 

different spinorbitals are orthogonal. The above integral survives, only when the two 

spinorbitals have same spatial function and spin function. In that case, they are normalized 

and hence the value of the integral is 1.  

We will continue our discussion on wave functions of multi-electron system in our next 

class.  

Thank you for your attention. 
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