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Excited States of He Atom-I 

Hello students! Welcome to this lecture. In the last lecture, we discussed how to treat 

degenerate states with perturbation theory. We also discussed its application to the excited 

states of He atom. In this lecture, we will continue our discussion on the excited states of 

He atom.  

(Refer Slide Time: 01:01) 

 

Although we made some progress along this direction in our last lecture, to keep continuity 

of discussion, we will quickly go through some of the important points discussed in the last 

lecture. We learnt in the earlier class that when we have a system with several degenerate 

states, the standard perturbation theory cannot be applied. For a d-fold degenerate system, 

when we consider perturbation, the degeneracy may be lifted partially or completely. 

However, in the limit of vanishing perturbation, we cannot trace back to one of these 

degenerate states, since any linear combination of these degenerate eigenfunctions is also 

an eigenfunction with the same eigenvalue. To avoid this problem, we defined the 

unperturbed wave functions as a linear combination of the degenerate eigenfunctions. The 

coefficients of the linear combination are to be determined.  
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Using the above defined unperturbed wave function, we formulated the perturbation theory 

within which the wave function correction and energy correction were obtained. While 

looking at 1st order energy correction, we came across a d x d secular determinant (see 

above in the slide) whose solution gives the 1st order energy correction as well as the 

coefficients to be used for the linear combination in expressing the unperturbed wave 

function.  

(Refer Slide Time: 06:05) 

 

We used the above strategy to study the excited states of He atom. Here, we considered 

electron-electron interaction as the perturbation. In the absence of the perturbation, the 

Hamiltonian is sum of two 1-electronic (He+) systems, whose exact solution is possible. 

For this system, the energy of the system is given by (Z = 2), 

 

The ground state is obtained when n1 = n2 = 1, i.e., the electron configuration is 1s2.  

 (Refer Slide Time: 08:21) 
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Since we are interested in the excited states of He atom, we can construct wave functions 

for the excited state by promoting one electron from n = 1 to n = 2. Since n = 2 is 4-fold 

degenerate (2s, 2px, 2py, and 2pz), we can generate 4-degenerate configurations 1s1 2s1, 1s1 

2px
1, 1s1 2py

1, 1s1 2pz
1. For higher excited states, we can promote one electron to n = 3, 4, 

etc. We restrict our discussion here only to the first excited state.  

 

(Refer Slide Time: 09:28) 
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To incorporate electron indistinguishability, we can generate four more electron 

configurations by exchanging the electrons between n =1 and n=2 in the original set of 4-

wave functions. This gives rise to eight degenerate wave functions as shown above in the 

slide.  

 (Refer Slide Time: 10:48) 

 

We are now dealing with 8-fold degenerate system in the excited state of He atom without 

including the electron-electron interaction. We can define our unperturbed system as a 

linear combination of these eight degenerate wave functions.  

 

The above form of the wave function leads to a 8x8 secular determinant  
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whose solution would give the 1st order correction to energy (En
(1)) and the coefficients (ci). 

In order to solve this problem, we need to evaluate the energy integrals (Hij
’). Since the 

basis functions (the wave functions of He+) are orthonormal, we do not have to evaluate 

the overlap integrals in the present case.   

(Refer Slide Time: 11:41) 

 

The solution of the above mentioned 8x8 secular determinant requires evaluation of several 

energy integrals,  𝐻𝑖𝑗
′ =  ⟨ψ𝑖

(0)
| 𝐻̂’ |ψ𝑗

(0)
⟩. 

First let us evaluate, 𝐻11
′ =  ⟨ψ1

(0)
| 𝐻̂’ |ψ1

(0)
⟩ 

 

The above integral is a Coulomb integral (J) representing a Coulomb interaction between 

the electron density of electron 1 in 1s orbital and electron density of electron 2 in 2s orbital.  

Next, let us consider 
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Unlike H’11, the above integral cannot be expressed as a classical Coulomb integral, since 

the electrons (electron 1 or 2) are exchanged between the orbitals. Such a term appears 

because we have considered electron exchange in our starting wave function. Therefore, 

the resulting integral is called as the exchange integral (K).  

Now, let us consider 

 

In the above integral, instead of writing dr1 dr2, we have actually expanded it in terms of 

dx1 dy1 dz1 for electron 1 and similarly dx2 dy2 dz2 for electron 2. Before trying to evaluate 

the numerical value of the integral, let us evaluate its symmetry properties, with respect to 

the parity operator (whose eigenfunctions are all even and all odd functions with 

eigenvalues of 1 and -1, respectively). For the above integral to be non-zero it has to be 

totally symmetric. However, we can see that in the above integral, 2px(2) function is anti-

symmetric with respect to x2 coordinate, while all other terms are symmetric. Hence, the 

overall integral becomes anti-symmetric and thus vanishes. Similarly, we can show that 

not only H’13, but also H’14 = H’15 = H’16 = H’17 = H’18 = 0. Similarly, H’23 = … = H’28 = 0.   

(Refer Slide Time: 16:37) 
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Following the discussion of H’
11= H’

22= J1s2s, we can show that other diagonal matrix 

elements will have similar form, for example, H’
33= H’

44= J1s2px, H
’
55= H’

66= J1s2py, and so 

on. Similarly, we can also show that the determination of the matrix elements H’
34, H

’
56, 

and H’
78 are going to be similar to that of H’

12 (= K1s2s). These integrals correspond to the 

basis functions which are simply different from each other in electron exchange. We can 

express these elements as the exchange integrals, e.g., H’
34 = K1s2px, H

’
56 = K1s2py, and H’

78 

= K1s2pz.  

Next, let us consider H’35 as the following integral involving ψ3 and ψ5 

 

We can use similar symmetry arguments (discussed earlier) to show that this matrix 

element is 0 (due to presence of 2px(2) and 2py(2) functions in the integral). Similarly, we 

can also show H’36 = H’37 = H’38 = 0.  

Following similar arguments, we can obtain the following form of the secular determinant 

 

The above determinant is block diagonal (4 number of 2x2 blocks that are not coupled to 

each other). The advantage of having block diagonal determinant like this is that we can 

now, instead of solving an 8 by 8 problem, solve four number of 2 by 2 problems. The 

latter is much easier. We should keep in mind that only those states which are connected 

by off-diagonal elements, are coupled to each other via the applied perturbation (electron-

electron interaction). 
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 (Refer Slide Time: 21:57) 

 

Now, let us consider the first of the 4 blocks, i.e.,  

 

We have already determined H’
11, H

’
12, H

’
21, and H’

22. By using those values, we get, 

 

Solving the above 2x2 problem, we get two energy values (E1
(1) and E2

(1)) and the 

corresponding coefficients that are used for describing the zeroth-order wave functions:  
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Without perturbation, all eight states have same energy. The 1st order energy correction 

lifts the degeneracy of the two energy levels E1 and E2. The 1st order energy corrections 

involve the Coulomb integral and exchange integral. Corresponding to each of the two 

energy corrections, we obtain two coefficients. For E1
(1) = J1s2s – K1s2s, the two coefficients 

are c1 = -c2.  Normalization of the wave function results 𝑐1 = 1/√2. Similarly, E2
(1)

 = J1s2s 

+ K1s2s, c1 = c2 = 1/√2.  

From the above two wave functions (Φ1
(0)

 𝑎𝑛𝑑  Φ2
(0)

), it can be seen that when the two 

electrons approach each other, i.e., r1-r2 → 0, 1s(1)2s(2) – 2s(1)1s(2) → 0, 

hence the wave function approaches 0. In other words, the probability of 

finding the two electrons at the same spatial position is zero. This goes by 

the name Fermi hole, i.e., where one electron is located, the other electron would avoid that 

region.  

On the other hand, when r1-r2 → 0,  Φ2
(0)

 does not vanish. Instead, an 

increase in the probability density is noticed. It shows that if electron 

number 1 is spatially located somewhere, electron number 2 will have increased probability 

to be found at the same spatial position. This observation goes by the name Fermi heap. 

While Fermi hole is intuitive (i.e., the two electrons avoid each other), Fermi heap is 

counterintuitive. Although, we may explain Fermi hole as repulsion of like charge, it 

should be noted that it has nothing to do with the charge of the electron. Both Fermi hole 

are Fermi heap are quantum mechanical phenomena.  We will rationalize these results in 

our next class.  

Thank you for your attention. 
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