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Hello students! Welcome to this lecture. After discussing perturbation theory and its applications 

to various systems, in this lecture, we will discuss perturbation theory applicable to degenerate 

states. 

(Refer Slide Time: 00:50) 

 

From perturbation theory, we obtained the energy expression for the nth state as,  

 

where the first term is the unperturbed energy of the nth state, followed by the 1st and 2nd order 

energy corrections in the 2nd and 3rd terms, respectively. While the 1st order correction is obtained 

by evaluating only 1 integral, the 2nd order energy correction requires evaluation of many integrals. 

In other words, the 2nd order energy correction for the nth state depends on all other states (m), 

especially on those states who lie close in energy with the state of interest (n), as indicated by the 

term 𝐸𝑛
(0)

− 𝐸𝑚
(0)

 in the denominator. What if the states n and m are degenerate? In such a case, we 
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can not use the standard perturbation theory we have discussed so far. Instead, we will devise a 

way to treat degenerate states with perturbation theory.  

Consider a d-fold degeneracy, for which we can write down  

 

If we apply a perturbation to this system, the energy levels and wave functions of the perturbed 

system are going to change accordingly,  

 

In such a situation, the degeneracy may be lifted completely, or partially, depending on the nature 

of the perturbation. When we withdraw this perturbation slowly, we expect the system to come 

back to its original state. In other words, when         . However, since the states are 

degenerate in the absence of perturbation, we can express many linear combinations of these 

degenerate states which will have same energy, i.e., 

  

Hence, for vanishing perturbation we can get some linear combination of the unperturbed 

degenerate states and express them as Φ𝑛
(0)

, representing the unperturbed states. Upon perturbation, 

we can define the perturbed wave function and energy as:  
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(Refer Slide Time: 10:51) 

 

Using the above expression in the Schrodinger equation, 

 

 

Let us now collect all terms in the above equation that have λ0and λ1 dependence, 

 

The first line represents the solution of the unperturbed system. Let us multiply ⟨Ψ𝑚
(0)

| from left in 

the second line above to obtain (m is one of the degenerate states),  

 

 

The 1st term in the left and right-hand side of the first relation above can be shown to be equal by 

using the Hermitian nature of 𝐻̂0 and degeneracy of state n and m. This results in the second 

relation above, which can be further expressed by using Φ𝑛
(0)

= ∑ 𝑐𝑖
𝑑
𝑖=1 Ψ𝑖

(0)
, 
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Now, we have d number of linearly dependent equations, whose solutions would give us the 1st 

order energy corrections.  

(Refer Slide Time: 16:20) 

 

We can express the secular equation as the d x d determinant shown in the slide above. The solution 

of these secular equations would result in d number of energy values representing the first order 

energy corrections for each of the d-degenerate states. For each energy value, we would get a set 

of coefficients c1, c2, … cd which would be used in expressing the zeroth-order wave function for 

that energy level.  
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(Refer Slide Time: 20:34) 

 

Now, let us apply the degenerate perturbation theory to the excited states of helium atom. If we 

consider the electron-electron repulsion in He atom as perturbation, the unperturbed energy would 

be (equal to two hydrogenic atoms with Z = 2) 

 

where, n1 and n2 are the principal quantum numbers of the two electrons. The ground state is 

obtained when n1 = n2 = 1 (electronic configuration: 1s2). The excited states are obtained by 

promoting one electron to n2 = 2. We can generate four such configurations: 1s12s1, 1s12px
1, 

1s12py
1, and 1s12pz

1. To allow electron indistinguishability, we can generate another four electron 

configurations where electron 1 and 2 are exchanged. In total, we obtain following 8 electronic 

configurations that would have same energy (in the absence of electron-electron interaction): 
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These 8-fold degenerate system can be represented by wave functions (ϕ𝑛
(0)

) as 

 

 

This would result in 8-linearly dependent equations, which can be represented by 

 

 

(Refer Slide Time: 27:33) 

 

The solution of the above mentioned 8x8 secular determinant requires evaluation of several energy 

integrals,  𝐻𝑖𝑗
′ =  ⟨ψ𝑖

(0)
| 𝐻̂’ |ψ𝑗

(0)
⟩. 

First let us evaluate, 𝐻11
′ =  ⟨ψ1

(0)
| 𝐻̂’ |ψ1

(0)
⟩ 
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The above integral is a Coulomb integral (J) representing a Coulomb interaction between the 

electron density of electron 1 in 1s orbital and electron density of electron 2 in 2s orbital.  

Next, let us consider 

  

Unlike H’11, the above integral cannot be expressed as a classical Coulomb integral, since the 

electrons (electron 1 or 2) are exchanged between the orbitals. Such a term appears because we 

have considered electron exchange in our starting wave function. Therefore, the resulting integral 

is called as the exchange integral (K).  

Now, let us consider 

 

In the above integral, instead of writing dr1 dr2, we have actually expanded it in terms of dx1 dy1 

dz1 for electron 1 and similarly dx2 dy2 dz2 for electron 2. Before trying to evaluate the numerical 

value of the integral, let us evaluate its symmetry properties, with respect to the parity operator 

(whose eigenfunctions are all even and all odd functions with eigenvalues of 1 and -1, 

respectively). For the above integral to be non-zero it has to be totally symmetric. However, we 

can see that in the above integral, 2px(2) function is anti-symmetric with respect to x2 coordinate, 

while all other terms are symmetric. Hence, the overall integral becomes anti-symmetric and hence 

vanishes. Similarly, we can show that not only H’13, but also H’14 = H’15 = H’16 = H’17 = H’18 = 0. 

Similarly, H’23 = … = H’28 = 0.  

We still have a few more integrals to evaluate before we can solve the secular determinant. We 

will take that up in our next lecture.  

Thank you for your attention. 
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