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Molecular Response to Electric Field-II 

Hello students! Welcome to this lecture. In the last lecture, we were discussing the response of 

molecules to electric field. We will continue our discussion in that direction in this lecture. 

(Refer Slide Time: 00:45) 

 

Just to refresh your memory, we discussed that since molecules are composed of charged particles 

distributed over space, they have an inherent electric dipole moment which interacts with applied 

electric field, thus creating a perturbation term in the original molecular Hamiltonian. We then 

used the Hellman-Feynman theorem (with electric field as the parameter) to obtain an expression 

that relates the expectation value of molecular electric dipole moment with the first derivative of 

molecular energy with the applied electric field.  

By expressing molecular energy as a Taylor series expansion in terms of the electric field around 

the unperturbed energy and defining a few molecular response parameters (permanent electric 

dipole moment, polarizability, and hyperpolarizability), we expressed the energy of the system in 

terms of the molecular response parameters and electric field strength (see above in the slide). 
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(Refer Slide Time: 03:56) 

 

By comparing the above expression of energy (in terms of response parameters) with that of the 

energy expression from perturbation theory, we obtained the following two relations for the 

molecular response parameters: 

 

 

 

𝜇0𝑧 and 𝛼𝑧𝑧 are the z-component of the permanent dipole moment and the zz-component of the 

polarizability tensor, respectively. If the molecule experiences an isotropic electric field, we can 

evaluate 𝛼𝑥𝑥 𝑎𝑛𝑑 𝛼𝑦𝑦 and express the mean polarizability as the arithmetic mean of the three 

polarizability components (as shown in the slide). The mean polarizability depends on the matrix 

elements of dipole moment matrix in the basis of the unperturbed states of the system.  Here we 

are restricting our discussion to 2nd order perturbation correction and hence we have dropped our 

discussion on the hyperpolarizability.  

147



(Refer Slide Time: 08:31) 

 

 

Before we start using the results obtained thus far, let us discuss the closure approximation of the 

2nd order energy correction that will help us in our future discussion.  

From 2nd order perturbation theory we know,  

 

where, the states |ψ𝑛
(0)

⟩ are defined in short-hand notation |𝑛⟩ and the square of the integral is 

expressed as a product of two matrix elements (H’nm).  The summation in the last term is for all 

𝑚 ≠ 𝑛. If our state of interest is the ground state, m accounts for all the excited states. It is often 

the case that the ground state is well separated from the excited states. In other words, the energy 

difference between any two excited states is negligible compared to the energy difference between 

the ground state and any excited state. Hence, Δ𝐸𝑚𝑛 can be treated as a constant (since it does not 
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change that much for different values of m) and be brought out of the summation, resulting in En
(2) 

 

The above approximation goes by the name of closure approximation.  

We can express the terms within the summation sign as following 

 

Which can be expressed as  

 

The first term is the element of the square of the matrix, while the second term is the square of that 

matrix element. The difference between the two is the mean squared deviation or fluctuation. The 

delta symbol indicates the uncertainty in the measurement of H’.  

Combining the closure approximation and above relation, we obtain a very useful relation 

𝐸𝑛
(2)

= −
⟨Δ𝐻′̂⟩

2

Δ𝐸
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 (Refer Slide Time: 18:03) 

 

Now we will use the results of closure approximation in the definition of polarizability. In our 

case, 𝐻̂′𝑚𝑛 = μ𝑚𝑛. It gives us the following 

 

Δμ is the fluctuation in the electric dipole moment of the molecule, and Δ𝐸 is the energy difference 

between the state of the interest (the ground state) and the excited states within the closure 

approximation. By ignoring the constant (2/3), we can write 

 

This expression tells us that the polarizability is proportional to the square of the fluctuation of the 

electric dipole moment. In other words, the more is the fluctuation in the electric dipole moment, 

the greater is the polarizability. The fluctuation in this electric dipole moment arises due to the 

movement of the electrons with respect to the nuclear positions. Hence, large fluctuation in the 

electric dipole moment indicates less control of the nuclei over the electrons and thereby greater 

degree of polarizability.  
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For an atom, the fluctuation in the electric dipole moment can be equated to the mean square radius 

of the orbital containing the electron, i.e.,  

 

A greater value of the mean square radius of an orbital indicates that the electron is found farther 

from the nucleus, which makes the atom easily polarizable. So, the polarizability is again related 

to this mean square radius. Now, let us consider a particular value of mean square radius of the 

orbit that defines the radius of the atom (R). For such a value of the mean squared radius, the term 

Δ𝐸 is essentially the ionization potential of the atom. Hence,  

 

The polarizability is greater for an atom with a greater atomic radius and it is inversely proportional 

to the ionization potential. Since the radius of the atom can be used to express the atomic volume, 

and the ionization potential is essentially the negative of the Coulombic interaction experienced 

by the electron, we can write the following 

 

This expression shows how polarizability is related to the volume of the atom. It is a convention 

to express α′ = α/(4πϵ0), α′ is known as the polarizability of the volume of an atom. 

From the above discussion, we see that polarizability relates to various other molecular properties, 

such as volume, the mean square radius, the ionization potential, and the fluctuation in the electric 

dipole moment. 
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The response parameter polarizability has an important role in molecular spectroscopy. During a 

spectroscopic transition (absorption or emission spectrum), the system undergoes a transition from 

state n to state m. There are two important components associated with this transition: one is the 

transition energy and the second is the intensity of the peak. The intensity of a transition at 

transition frequency ν𝑚𝑛 is given by the quantity called oscillator strength fmn    

  

Using the above relation in the expression of polarizability, we can express polarizability in terms 

of oscillator strength as follows: 
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We have expressed oscillator strength in terms of two parameters: the oscillator strength, that is, 

the intensity of the peak, and absorption frequency. This shows that molecules showing intense 

absorption spectrum (large oscillator strength) at low frequency are highly polarizable, such as 

intensely coloured molecules. On the other hand, molecules showing weak absorption spectrum at 

high frequency are less polarizable, such as colourless hydrocarbons.  

The take-home lesson of the above exercise was to show you that even though perturbation theory 

gives us an idea about the correction to the wave function and to the energy, we can express 

different molecular parameters in terms of the perturbation energy by using Hellman Feynman 

theorem and then can proceed to obtain different molecular properties.  

Thank you for your attention. 

153


