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Hello students! In the last class we discussed about the origin of quantum mechanics. We looked

at  the experimental  results  that  puzzled  the scientist  in  the late  19th century  and early  20th

century and the two great theoretical  ideas the de Broglie’s hypothesis  and the Heisenberg's

uncertainty principle that led to the discovery of this new field called quantum mechanics. After

these  major  developments,  there  were  many  different  scientists  who  contributed  in  many

different ways to further our knowledge in physics and chemistry. 

Soon it was felt that we have actually discovered a new field of study: the quantum mechanics.

At that point it was very important to make some ground rules so that we all can communicate

with each other more effectively. This is what we are trying to do in this class.  Normally we

discuss  this  in  quantum mechanics  through  the  so-called  postulates  of  quantum mechanics,

which put forward the ideas and the concepts of quantum mechanics and how we can describe a

quantum mechanical system. 

(Refer Slide Time: 01:52)
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The first postulate of quantum mechanics says that the state of a quantum mechanical system is

completely specified by the wave function. Let us, first try to understand what it tries to tell, when

I say I want to understand a particular problem quantum mechanically or I want to define a

system quantum mechanically,  what  do  I  have  in  mind?  I  essentially  want  to  obtain  some

properties of the system. I want to get some information about a particular molecule I have in

mind, or a particular chemical reaction that I am studying. Quantum mechanics tells, if you are

interested in any system and you want to study it quantum mechanically, there exists something

called  the  wave  function  that  contains  all  the  information  that  you  can  possibly  think  of.

Quantum mechanics gives this recipe, that if you want to know something about a particular
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system: a molecule or a chemical reaction or a biomolecule just have its wave function. What is

this wave function? That is the tricky question. 

The  wave  function  does  not  have  a  physical  interpretation.  We typically  express  this  wave

function with this ψ, which is Greek y. It is a function of position and time ψ ( x ,t ). It has got a

spatial dependence (x) and it has got its temporal dependence (t). Since it depends on the location

and time, we can also study the time-evolution or how the system evolves in time using quantum

mechanics. 

This wave function ψ contains all the information about the system that we are interested in, but

the wave function itself does not have any physical interpretation. But luckily for us, there exists

some other quantity that can be used to obtain some physical idea. This goes by the name Born

interpretation. Born interpretation suggests that although the wave function itself does not have

any physical meaning, what has this physical meaning is ψ∗ψ=|ψ|2 . This quantity has a physical

meaning:  a  probabilistic  interpretation.  So,  this  is  also  called  as  Born’s  probabilistic

interpretation, i.e., it gives me the answer to the following question. What is the probability of

finding the system at a particular value of x at a particular value of t? 

Since we have the wave function square or the mod square has a probabilistic interpretation, we

have to make sure that the wave function follows certain conditions. For example, when I say

that this has a probabilistic interpretation, normally the next question would be, if I search all

over the place, that means from minus infinity to plus infinity, what is the probability of finding

the system? Naturally, that would be 1. Because the particle is out there somewhere, I do not

know exactly where but it is there somewhere. If you search everywhere you are going to find it

somewhere! If I integrate ψ∗ψ  over all space, I should get 1. This is called normalization of the

wave function. As we see, the probabilistic interpretation required that this wave function should

be normalizable. That means wave function ψshould be square integrable. 

The requirement that the wave function should be square integrable comes from the fact that we

are  using  Born interpretation  of  the  wave function.  The square  integrability  of  the  function

requires that the function should be continuous, single valued, and its first derivative should be

continuous. When the function is square integrable we call that function a well-behaved function.

So, we impose a condition that our wave function should be well behaved. 
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The first postulate was simple in its statement:  that there exists a quantity the wave function

which contains everything that you need to know about the system. That is very reassuring. But

the point is I want to know some information, if everything is there what and how can I learn

about it? 

Then quantum mechanics answers that question by saying, if you want to know something about

a quantum mechanical system, there is a way. The way is to first ask this question, what do I

want  to  know  about  this  system?  Which  classical  observable  am  I  interested  in  it?  Am  I

interested  in  the  momentum?  Am I  interested  in  position?  Am I  interested  in  the  energy?

Because the answer lies in the question that I ask. If I am interested in position, then I must bring

the so-called position operator. The second postulate tells  that  for every classical observable

there  exists  an  operator  in  quantum  mechanics.  If  my  classical  observable  is  position,  the

operator that I must bring is the operator for position. If my classical observable is momentum, I

must bring my momentum operator. 

In quantum mechanics the operator is typical usually shown with a hat which signifies that I am

talking about an operator. If I am looking for a momentum as the classical observable I must

bring momentum operator or  px whose form is given as minus  px=−iℏ d
dx

. Similarly, if I am

interested in kinetic energy, the operator is p
2

2m
.  If I am interested in the energy of the system, I

would bring the Hamiltonian operator. Hamiltonian is the name of the operator whose classical

observable is energy.  

We said that we have to get this operator to get the answer. But then after getting this operator

what answer am I going to get? The answer to that question lies in the third postulate. The third

postulate says that, when I do the measurement for any classical observable, the only values that

I  only  values  that  I  will  ever  observe  are  the  eigenvalues  of  the  operator.  Therefore,  the

eigenvalues and eigenfunctions are extremely important quantities in quantum mechanics. The

result of my experiment is going to be the eigenvalues of the operator and only the eigenvalues

of the operator, nothing other than the eigenvalues of the operator are going to be allowed as

outcome from my experiment. 
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Consider this operator 
d
dx

, which appears in the momentum operator. 

d
dx
a x2=2ax (a x2not aneigenfunction )

d
dx
eax=eax (eax isan eigenfunction )

The postulate 3 describes the second case, that only allowed observables are the eigenvalues of

that operator. So, if I doing the measurement corresponding to the position, I am going to get the

eigenvalues  of  the  position  operator,  if  I  am making the  measurement  corresponding to  the

energy I will get the eigenvalues corresponding to the Hamiltonian operator, not the position

operator, but the Hamiltonian operator because I am trying to measure the energy. 

Now,  you  might  be  wondering  what  about  the  first  case?  What  if  the  system  is  not  an

eigenfunction? What would I get? The answer is going back to postulate 3, postulate 3 tells no

matter what only values that will ever be observed are the eigenvalues of that operator. You

would still get the eigenvalues of the operators as outcomes and how that would happen we will

come to that, but before that we get one interesting consequence of this third postulate. 

Since the third postulate says that the eigenvalues are the observables of the experiment, the

eigenvalues should be real and not imaginary. If the quantum mechanical operator corresponds to

a classical observable, then the eigenvalues of the quantum mechanical operator is real.

 (Refer Slide Time: 16:26)
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Now,  this  is  a  very  interesting  observation,  because  it  has  got  great  consequence.  The

consequence  of  postulate  3  is  that  if  we  impose  this  condition  that  the  eigenvalues  of  the

quantum mechanical operator is real and then if we do little bit of algebra will come to this

equation 

First, let us try to understand the second equation which is written in the integral form. ψm
¿ , ψn are

two different functions,  A is a quantum mechanical operator corresponding to some classical

observable, therefore the eigenvalues of operator A are going to be real. Look how this left-hand

side and right-hand side are different. In the left-hand side, the operator  A acts on  ψn. On the

right-hand side, you see there is a turn-over, the operator A does not act on ψn rather it acts on ψm

. This is a beautiful mathematical form that would help us obtain many interesting results. When

an operator satisfies this relation, we call this operator a Hermitian operator. I am sure in your

basic quantum mechanics course you have learnt how to show, the momentum, kinetic energy

operators, etc. as Hermitian operators. If not, you please go back and try to do that. 

The first equation (see above) is a reformulation of the second equation, by using the so-called

Dirac’s bra-ket form of writing the integral. There are three places in bra-ket, the left-hand side,

the central, and the right-hand side. The left-hand side is called bra, the right-hand side is called
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ket. So, I have ψm in the bra, ψn in the ket and the middle part is the place for the operator. The

operator acts on the ket giving rise to a function, which is then multiplied with the function in the

bra. When a function is in the bra, and you open this bra-ket notation to write it in integral form,

the function is written as its complex conjugate (ψm
¿
¿ , star  is the indicates  it is the complex

conjugate of this function. Dirac’s bra-ket formulation is quite convenient to write long equations

and also to express the results in matrix form. 

One consequence of the postulate 3 is that, all quantum mechanical operators that correspond to

some classical observable are Hermitian operator. Now, what is so great about it? The great thing

about this is that the Hermitian operators have some special properties. 

First, they have real eigenvalues that we have already discussed. The second property is that, the

eigenfunctions of a Hermitian operator form a complete set of orthogonal functions. There are

two keywords here: orthogonal and complete set. First let us understand orthogonal. So, suppose

I say that this Hermitian operator A has got two eigenfunctions, ψm
❑
∧ψ n. Now, when I say they

are orthogonal to each other I have the following in my mind. If I evaluate ∫ψm
¿ ψ nd τ , I should

get 0. that would mean that they are orthogonal to each other. In bra-ket form this is shown as,

⟨ψm|ψ n ⟩=0.ψm
¿ is simply replaced by having ψm

❑ in the bra. This relation shows that the overlap of

ψm
❑
∧ψ n, which are two eigenfunctions of the same Hermitian operator A the overlap of these two

functions is 0, that means they are orthogonal to each other. And of course, the wave function

itself can be normalized (Born interpretation), ⟨ψm|ψm ⟩=1. Together, normalized and orthogonal

functions are called orthonormal,  ⟨ψm|ψ n ⟩=δmn, which is 1 when  m =  n  and 0, otherwise. If I

have,  say,  10  eigenfunctions  of  a  Hermitian  operator  each  eigenfunction  is  going  to  be

orthogonal to every other eigenfunction. 

Now, what is a complete set? A complete set is even more interesting or has got even more

significance. Suppose I have this eigenfunction  ψm of the operator  A.  Just like  ψm , I can have

other eigenfunctions, ψm , ψn ,ψ o⋯. I call them a complete set of eigenfunctions when I would be

able to express any other arbitrary function (let us call it  ϕ) as a linear combination of these

eigenfunctions, i.e., 
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If  I  have any arbitrary  function  ϕ,  I  would be able  to  express  this  arbitrary  function of  the

complete set of eigenfunctions ψi. When I can do this, then I would say that the eigenfunctions

form a complete set. Now, what is this  ci? The values of  ci are given as simply  ,

which is

the overlap of  ψi,  that is one of these eigenfunctions,  with the arbitrary function  ϕ.  In other

words, ci shows how similar ψi is to the arbitrary function ϕ. Hermitian operators have got these

two  beautiful  properties:  real  eigenvalues  and  they  form  a  complete  set  of  orthogonal

eigenfunctions. 

In this lecture we discussed about three postulates of quantum mechanics and the consequence of

this third postulate in so far as describing the Hermitian operator and how Hermitian operator

have these  beautiful  properties  which  we would  be  using  in  the  next  class  and discuss  our

quantum mechanical systems further. Thank you for your attention.
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