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Examples of Perturbation Theory - II 

Hello students! Welcome to this lecture. In the last lecture, we started our discussion on a few 

applications of perturbation theory. We will take up a few more examples of perturbation theory 

in this lecture.  
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The first example in this lecture relates to the hydrogen atom. In the previous example (last class), 

we considered an external magnetic field to the hydrogen atom as a perturbation. In this example, 

we will explore a perturbation that does not come from outside, rather arises within the system. 

When we solved the H-atom problem, we included the spin of the electron after solving the spatial 

part. But spin is inherent property of the electron that can interact with its orbital motion via the 

so-called spin-orbit interaction.  

In this example, we will consider spin-orbit coupling as a perturbation in the hydrogen atom. The 

unperturbed system is the Hamiltonian of H-atom  

 



whose exact solutions are already known as following 

 

Here ψ𝑛𝑙𝑚𝑠 form the complete set of energy eigenstates of H-atom, with n, l, m as the spatial and 

s as the spin quantum number. E1 is the ground state energy (-0.5 au).  

The perturbation Hamiltonian is given by the spin-orbit interaction, 

 

Where, J is the total angular momentum operator (orbital + spin) and A is the spin-orbit coupling 

constant (that depends on the principal and azimuthal quantum numbers). Using the unperturbed 

eigenstates ψ𝑛𝑙𝑚𝑠 and the perturbation Hamiltonian, the 1st order energy correction can be obtained 

as, 

 

Here j represents the good quantum number of the system (when spin-orbit interactions are 

included). For n =1 and 2, possible values of j, as well as the 1st order energy corrections, are 

given below: 

 



As can be seen, the lowest energy state does not show any change due to spin-orbit coupling since 

the orbital angular momentum is 0 here. For a similar reason, n = 2, l = 0 state also does not change 

its energy. However, n = 2, l = 1, leads to two possible j values (j = l + s, l – s = 3/2, 1/2). Here, 

the energy of j = 3/2 increases by Anl/2 (in the atomic unit where ℏ = 1), while that of j = 1/2 

decreases by Anl. Please keep in mind that the spin-orbit coupling constant would depend (both 

sign and magnitude) on the nucleus of the atoms, the number of electrons in the atom, apart from 

the principal and orbital angular momentum quantum numbers.  

 

A qualitative view of the splitting of the degenerate states is shown above (orange: j = ½ and green 

j = 3/2). Each split state is (2j+1)-fold degenerate (mj = -j, -j + 1, … , j - 1, j). This degeneracy can 

be lifted in the presence of an external magnetic field based on their j and mj quantum numbers.  
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We will now discuss another example, where we would study two-body interaction. Let us 

consider the helium atom, whose Hamiltonian is given by (within Born-Oppenheimer 

approximation):  

 

The first term is the sum of two one-electron operators (electron kinetic energy and electron-

nuclear potential energy), and the second term is the two-electron operator. The exact solution is 

possible for the 1-electron part (two independent 1-electron systems), which constitutes the 

unperturbed system. The wave function of the unperturbed system can be written as the product of 

eigenstates of two H-like atoms (with electron coordinates r1 and r2 and nuclear charge Z=2): 

 

The unperturbed energy is given by the sum of the energy of two H-like atoms, 

 

Where EH is the energy of H-atom (-0.5 au = -13.6 eV). The unperturbed energy of -108.83 eV is 

about 38% overestimation of the true (experimental) energy of He atom (-79.01 eV).  

The two-electron operator (1/r12) constitutes the perturbation Hamiltonian. The 1st order energy 

correction is calculated as 

  

After including the 1st order energy correction, the energy of He atom becomes -74.82 eV (5% 

error). This error reduces to 0.2% when 2nd order energy corrections are included and it reduces to 



0.01% when perturbation correction up to 20th order is included! It shows that the true solution is 

in principle, achievable, but it may take several higher-order terms. In this example, we actually 

did not explicitly evaluate the integrals, but we looked at how the energies converge towards the 

experimental value or the true energy. Since the energy converges to its true value, the wave 

function is also expected to converge to its true value, which can be verified by evaluating other 

properties of the system from this wave function. 
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Before we discuss any further application of perturbation theory, now, let us look at a very useful 

theorem that goes by the name Hellmann Feynman theorem. Hellman Feynman theorem relates to 

a situation where the Hamiltonian depends on some parameters (p) such that when this parameter 

is changed, the Hamiltonian changes.  

Let this Hamiltonian follow the following Schrodinger equation: 

 

 

 



Now let us consider  

 

The three terms above are obtained by differentiating the energy expression given in the previous 

equation. The above expression can be rearranged as (by considering Hermitian property of H) 

 

Since the last term in the above expression is 0 (differentiation of a constant), we obtain the 

Hellman-Feynman relation 

 

This relation tells us that if there is a parameter on which the Hamiltonian depends, the expectation 

value of this operator dH/dp simply is the first derivative of the energy with respect to the same 

parameter. We will see a few examples of the Hellmann-Feynman theorem in our next lecture.  

Thank you for your attention. 


