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Hello students! Welcome to this lecture. In the last few classes, we discussed the variational 

principle. We saw how we could use linear and non-linear variational methods and discuss 

chemical bonding. As applications of the linear variational principle, we discussed molecular 

orbital theory and valence bond theory. In this lecture, we will extend our discussion to another 

approximate method: the perturbation theory.  

The key idea of variational principle is that if you have a system whose Hamiltonian is too difficult 

for an exact solution of the Schrödinger equation, you start with a trial function or a guess wave 

function (containing one or many variational parameters) and then use the variational principle to 

minimise the energy. By minimising the energy, you improve your trial function and finally 

estimate the true energy and true wave function. The critical bottleneck of this approach is that the 

best estimation of the energy and the wave function depends on the choice of the trail function. 

Furthermore, the application of the variational principle to the excited state was not 

straightforward. Keeping these two things in mind will now discuss the other approximate method 

that is the perturbation theory.  
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Within perturbation theory, the estimation of the true wave function and the true energy of a 

complicated system is obtained in a somewhat different way. The guiding principle in perturbation 

theory is to separate the complicated system into two parts, namely, the part that can be exactly 

solved (called the unperturbed part) and the remaining part that can not be solved exactly (the 

perturbation). For example, for a multi-electron atom or molecule, the two-body electron-electron 

interaction terms make the Schrödinger equation unsolvable. If we remove these terms, the 

remaining terms in the Hamiltonian are the sum of several 1-electron terms that can be solved 

exactly.  Within perturbation theory, we would consider the electron-electron interaction terms are 

perturbation (𝐻̂’) to the non-interacting many-electron system (𝐻0̂).  

 

The term 𝜆 is a book-keeping perturbation parameter that controls the strength of the perturbation 

(0 ≥ 𝜆 ≤ 1). The ultimate goal of the exercise is to find Ψ𝑛𝑎𝑛𝑑 𝐸𝑛, while at the beginning of the 

exercise, we only know Ψ𝑛
(0)

𝑎𝑛𝑑 𝐸𝑛
(0)

. We express Ψ𝑛𝑎𝑛𝑑 𝐸𝑛 as, 

 

Here, Ψ𝑛
(1)

𝑎𝑛𝑑 𝐸𝑛
(1)

 are the first order correction to the wave function and energy, respectively. 

The above expressions are truncated after second-order corrections. We can use these expressions 

in the Schrodinger equation and obtain 

 

Next, we collect the terms with equal powers of 𝜆 (λ𝑛, 𝑛 = 0, 1, 2 … ) s to obtain: 



  

The first expression is the solution of the unperturbed system.  
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Let us consider the terms containing λ1 and multiply < Ψ𝑚
(0)

| in each term, 

 

Using the facts that H0 is Hermitian, and Ψ𝑚
(0)

, Ψ𝑛
(0)

. .. are orthogonal functions (eigenfunctions of 

Hermitian operator H0), we get  

 



For m = n, upon rearrangement, we obtain: 

The first order energy correction requires evaluation of two integrals. One, (in the numerator of 

the above expression) is evaluation of the expectation value of the perturbation Hamiltonian when 

the state of the system is defined as the unperturbed wave function Ψ𝑛
(0)

. The second integral to be 

evaluated is equivalent to the normalization of Ψ𝑛
(0)

. Please note, this correction is for the nth state 

of the unperturbed system. To get energy correction of other states, similar procedure can be 

obtained.  
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Now, we will look at the wave function correction. Starting from the expression,  

 

and considering  𝑚 ≠ 𝑛, we get  

 



Now, we can express the unknown function Ψ𝑛
(1)

 in the basis of orthonormal, complete set of 

functions {Ψ𝑚
(0)

} as  

With some rearrangements, we obtain  

To obtain the first order wave function correction for the nth state, we need to evaluate integrals 

⟨Ψ𝑚
(0)

|𝐻’|Ψ𝑛
(0)

⟩ for all values of  𝑚 ≠ 𝑛. This summation is over all the states of the complete set 

of eigenfunctions of the unperturbed Hamiltonian (H0). Hence, the cost of obtaining first order 

wave function correction is quite high, because, in principle, we have to calculate infinite number 

of integrals.  
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So far, we have obtained first-order wave function and energy corrections. By doing a similar 

exercise, we can obtain the second order energy correction (shown above). Careful observation 

would show that the terms appearing in the 2nd order wave function correction are already present 

in the 1st order wave function correction. Hence, the cost of obtaining second-order energy 

correction is equivalent to the cost of getting the first-order wave function corrections. 
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Using the corrections in the energy and wave functions, we can obtain the final form of the energy 

and wave functions as shown above. We can obtain higher-order corrections, but they come with 

huge additional cost with a marginal increase in accuracy.  

We already saw that the cost of obtaining first-order wave function correction and second-order 

energy correction are similar. In fact, it can be shown that if we have nth order wave function 

correction, we can estimate (2n+1)th order energy corrections. So, in principle, if I have first-order 

wave function correction, I can easily evaluate up to the third energy correction.  

For 1st order wave function correction (and also 2nd order energy correction), we noticed that the 

number of integrals to be evaluated is, in principle, infinite. In practice, we need to truncate it 

somewhere. Suppose I want 1st order correction for n = 1. We can immediately see that |Em -E1| 

becomes very large for states that are far in energy from E1. Hence, their contribution to the 1st 

order wave function correction is low. Hence, the perturbation correction for a state of choice is 

dominant from those states that lie close in energy to the state of interest. Thus, we can truncate 

the series to a few nearby states. 

Additionally, we can also use symmetry to decide which states can contribute to the correction of 

the state of choice.  



It can be shown that only those states (m) have a non-zero contribution, for which the right-hand 

side of the above equation contains the totally symmetric irreducible representation. In such a case, 

we need to evaluate contributions from a fewer number of states that satisfy the symmetry 

requirement.  

In the next lecture, we will discuss a few examples of perturbation theory.  

Thank you for your attention. 


