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Hello students! Welcome to this lecture. In the last lecture we discussed about the molecular orbital 

treatment for diatomic molecules and in this lecture will extend our discussion to the molecular 

orbital treatment of polyatomic molecules.  

Molecular orbital theory proceeds with one basic prescription, that is: the molecular orbitals are 

formed by linear combination of the atomic orbitals. While discussing the molecular orbital 

treatment of diatomics we took molecular symmetry into account, where we showed that atomic 

orbitals of same irreducible representation (under the molecular point group) can mix to give rise 

to molecular orbitals. This symmetry-adapted linear combination of atomic orbitals reduces the 

complexity of the linear variational problem to be solved. Let us now extend our discussion to 

polyatomic systems and see how symmetry-adapted molecular orbitals can be formed.   

(Refer Slide Time: 02:42) 

 

Let us consider a simple AH2 system, where A can be any element in the second row of the periodic 

table. Here, we have three atoms, two hydrogen atoms and one A (N or O, for example). Each 

atom will participate in the chemical bonding using its valence orbitals.  Here, instead of 
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considering each atom, let us treat the molecule as two fragments: A and H2. 

We already know the molecular orbitals of H2. One of them is a positive 

combination of the two 1s atomic orbitals (the bonding orbital) and the other 

one is the negative combination of the two (the antibonding orbital). The sign 

of the coefficients are indicated by the color of the orbitals. The AH2 molecule 

belongs to C2v point group. Hence, the symmetry of these fragment orbitals 

have to be determined within the same point group. In C2v point group, there 

are four symmetry elements: E, C2 rotation around z-axis, σv along the xz and yz planes. By 

applying these symmetry operations on the fragment orbitals of H2, it can be shown that the 

bonding orbital spans A1 and the antibonding orbitals spans B1 irreducible representation 

(character table for this point group is given in the slide above). 

Now, let us consider the central atom A, whose valence orbitals are 2s, 2px, 2py, and 2pz. We can 

find out from the character table that these orbitals span A1, B1, B2, and A2 irreducible 

representation, respectively. Taken together, we have now 6 orbitals which will take part in the 

linear combination for molecular orbital formation. If we do not use symmetry, the problem will 

be a 6 x 6 problem. However, when we consider symmetry we can see that 3 of these 6 orbitals 

have A1 symmetry, 2 of them have B1 symmetry and 1 is of B2 symmetry. If we follow symmetry-

adapted linear combination, we can write down three trial functions as given below:  

 

Here, the coefficients (ci) are unknown and will be determined from the solution of the 

corresponding secular equations. It can be seen that instead of solving a 6 x 6 problem, we need to 

solve three simpler problems, one of which is a 3rd order problem and one is a 2nd order problem, 

while the third one does not require any additional calculations.  
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(Refer Slide Time: 13:39) 

 

The orbitals to be used for linear combination in each symmetry is shown above. For B2 symmetry, 

since there is a single orbital this orbital remains as a non-bonding orbital. In B1 symmetry, where 

we have two orbitals, the final molecular orbitals will be (similar to H2 case) of positive and 

negative combination of the two fragment orbitals. Similarly, within A1 symmetry, we need to 

mix three orbitals and the resulting molecular orbitals will be some linear combination of these 

fragment orbitals. For each of these problems, we can set up the secular equations, determine the 

overlap integrals, and energy integrals. The exact values of these integrals will depend on the 

molecular structure (A-H1, A-H2 bond distances and H1-A-H2 angle). Using these integrals, the 

secular equations can be solved and the eigenvalues and wave functions can be obtained. We are 

here skipping the numerical details of the linear variational calculations and focus instead on the 

final results.   
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(Refer Slide Time: 14:59) 

 

Let us now arrange the final molecular orbitals according to their energy. We can immediately 

identify the non-bonding 1b2 molecular orbital (the first – and only – molecular orbital of b2 

symmetry). We have two molecular orbitals from b1 symmetry: the lower energy one is the 

bonding combination (1b1) and the upper energy one is the antibonding combination (2b1) of the 

two fragment orbitals belonging to B1 irrep. The third set of orbitals constitute three molecular 

orbitals of a1 symmetry. Of these, 1a1 and 3a1 orbitals are the bonding and antibonding 

combinations of the orbitals of A with H2 fragment, whereas 2a1 is a non-bonding orbital primarily 

composed of a 2p orbital of A. Keep in mind that the b2, b1 and a1 molecular orbitals are obtained 

from three independent calculations and these orbitals are arranged according to their energy. 

Based on the number of electrons available, we can fill the molecular orbitals. For example, for an 

8-(valence) electron AH2 (A=oxygen), the electronic configuration is 1a1
2 1b1

2, 2a1
2, 1b2

2. One can 

perform a similar analysis for AH3, AH4 systems and derive various molecular properties from the 

molecular orbital theory. 

(Refer Slide Time: 18:02) 
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Let us now extend our discussion to even larger systems. Here, we will discuss the molecules with 

pi electrons. Consider ethylene, where you have carbon-hydrogen sigma bonds and carbon-carbon 

sigma bond along with C-C pi bond. We can follow a similar approach of symmetry-adapted linear 

combination of atomic orbitals to obtain the sigma and pi orbitals of ethylene. From symmetry 

point of view, the sigma and pi orbitals do not mix and hence can be obtained from independent 

calculations. We can extend this observation to even larger pi-conjugated systems, such as, 

butadiene or benzene, etc. In essence, we can separately treat the pi-orbitals from the rest. This has 

further helped from energy arguments, where a clear sigma-pi separation is often noticed. Since 

the pi-orbitals often constitute the chemically significant frontier molecular orbitals, In the rest of 

the discussion, we will ignore the sigma bonds and focus only on pi bonds, following the approach 

of Hückel, popularly known as Hückel’s molecular orbital theory (H-MOT).  

There are a few fundamental approximations in H-MOT. First, we consider only the pi-electrons 

in the Hamiltonian (𝐻̂𝜋), where the total Hamiltonian of the pi system is now considered as the 

sum of several one-electron Hamiltonians (𝐻̂𝑖). The solution of the pi Hamiltonian is achieved by 

expressing the wave function as a product of the 1-electron wave functions. For a 𝑛𝜋 electrons 

system, the total wave function is simply given as a product of 𝑛𝜋 one-electron wave functions.  
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The one electron wave functions ϕ𝑖 are the solution of one electron Hamiltonians, where the one-

electron functions ϕ𝑖 are expressed as linear combination of 2pz orbitals of the carbon atoms in 

the pi system with nc number of C-atoms. 

Given the choice of the trial function as a linear combination of several atomic orbitals, we can 

now carry out a linear variation calculation by evaluating the overlap integrals (Sij) and energy 

integrals (Hij).  With increasing number of C-atoms in the molecule of interest, the number of 

integrals to be evaluated increases. In Huckel’s molecular orbital theory, however, we do not 

explicitly evaluate these integrals. Rather, we use some empirical estimations for these integrals 

based on some simple guidelines (or rules) as following: 

 

The overlap integrals between any two (normalized) orbitals centred on two different atoms are 

approximated as 0. This approximation can be justified from the fact that the overlap integrals 

between two pz orbitals are small and nearly constant. Furthermore, the energy integrals are also 

not explicitly calculated. Rather, some empirical constants (𝛼 𝑎𝑛𝑑 𝛽) are used in their place, as 

shown above. 
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Consider betadine. C3 and C1 are not connected. Hence from the above rule, H13 = 0. On the other 

hand, H12 = β (a negative constant, called bond integral or resonance integral), as C1 and C2 are 

connected. Additionally, H11 = H22 = H33 = H44 = α. So, instead of calculating any of these integrals 

we are just taking some standard empirical values and putting them into the secular equations.   

(Refer Slide Time: 27:16) 

 

Based on the rules discussed above, the secular equations for the linear variational problem appears 

as 

 

The eigenvalues of the tridiagonal matrix are given by a general formula 
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Since beta is a negative constant, e1 is the lowest energy orbital and e4 is the highest energy orbital. 

Now, corresponding to each energy value, we can get a set of coefficients which can be used in 

the linear combination to express the (Hückel) molecular orbitals: 

 

The above wave functions can be pictorially represented as the following: 

 

Here the lowest energy orbital (𝜙1) has no nodes, while the higher energy orbitals have 

increasingly greater number of nodes (1, 2, 3 for 𝜙2, 𝜙3, 𝜙4, respectively). Once the molecular 

orbitals are determined, the electron configuration can be obtained by filling the available 

π −electrons starting from the lowest energy orbitals. For example, in butadiene, the π −4 

electrons can be filled in 𝜙1 𝑎𝑛𝑑 𝜙2. Thus, 𝜙2, 𝜙3 become the HOMO and LUMO, respectively, 

of this molecule. We can use these results to discuss the stability, reactivity of the concerned 

molecules. But we must always be aware of the approximations we have made to get these results. 

For quantitative accuracy we require accurate calculations, with explicit evaluation of the integrals.  

In this lecture we discussed how we can use linear variational principle to describe the famous 

Hückel molecular orbital theory.  

Thank you for your attention. 
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