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Hello students! Welcome to this lecture. In the last lecture we discussed a few applications of 

linear variational method in chemical bonding. Within that we discussed the molecular orbital 

theory and its application in hydrogen molecule. We discussed that molecular orbital theory 

suggests to construct trial wave function for the molecule as a linear combination of the atomic 

orbitals.  

In this lecture we will extend our discussion from hydrogen molecule to other larger systems. In 

case of hydrogen molecule, we had only 1s electrons, for molecules with heavier atoms, we need 

to consider electrons in other orbitals. First, we will discuss molecular orbital treatment of 

diatomics and then extend our discussion to polyatomics.  
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Let us consider any diatomic molecule from atoms in the 2nd row of the periodic table. For 

example, O atom, whose electron configuration is 1s22s22p4. When O atom takes part in a molecule 

(O2, CO, NO etc.), it does so by using its electron in various orbitals. These atomic orbitals are the 

eigenfunctions of the Hamiltonian of O atom. They form a complete set of orthonormal 

eigenfunctions (1s, 2s, 2p, 3s, 3p, 3d, …), although in the ground state only the lowest 2 shells 



carry electrons. The higher energy orbitals which do not carry electrons (the so-called virtual 

orbitals) are diffused and hence can be ignored from our trial function (although for accurate 

treatment of the system, these orbitals need to be considered). On the other hand, the low-energy 

orbitals (such as 1s in O) are too compact to participate in chemical bonding. Hence, the core 

orbitals can also be ignored from our trial function. This leaves us with the valence orbitals (2s, 2p 

in O), which are important for chemical bonding and hence will be included in our trial function. 

If we consider O2 molecule, each oxygen will be described by 4 atomic orbitals (2s, 2px, 2py, 2pz) 

and hence the trial function of the molecule will have total 8 atomic orbitals. We can proceed to 

do a linear variational calculation, which in case of O2 will be an 8 x 8 problem.   

 

Before solving the above secular equations, we need to evaluate to overlap integrals (Sij) and the 

Hamiltonian matrix elements (Hij). We can see there are several integrals to be evaluated. But we 

would now use molecular symmetry to reduce the number of integrals we need to evaluate.  

Hamiltonian of a system is invariant to any symmetry operation of the molecule. This means, when 

I construct the matrix element Hij, the integral survives only when it is totally symmetric.  

 

From symmetry arguments, we can see that the above integrals are totally symmetric only when 

both 𝜓𝑖  𝑎nd 𝜓𝑗 span the same irreducible symmetry in the molecular point group. We should keep 

in mind that the energy integrals and the overlap integrals become 0 when the concerned atomic 

orbitals do not belong to the same irreducible presentation. By referring to a character table of the 

point group of the molecule of interest, we can easily find out symmetry of the atomic orbitals. 

For example, for a heteronuclear diatomic molecule, we can check the character table for 𝐶∞𝑣 

point group and find out that the 2s and 2pz orbitals belong to Σ+ irreducible representation, while 



the 2px and 2py orbitals belong to Π symmetry. Since the orbitals of different symmetry would 

not mix with each other, we can reduce the complex 8 x 8 problem to separate small problems, 

corresponding to each symmetry representation. In the case O2, we can treat 2s and 2pz of both O 

atoms separately from the treatment of the 2px and 2py orbitals of the atoms. In this case, 8 x 8 

problem reduces to two 4 x 4 problems.   
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If we carry out the abovementioned two 4 x 4 variational problems, we would obtain the energies 

and the wave functions of the diatomic molecules. The wave functions are expressed as linear 

combination of the constituent atomic orbitals. The final result of this exercise is often expressed 

in terms of the very familiar molecular orbital diagrams, as shown above. The connecting lines 

between the atomic orbitals and the molecular orbitals indicate the linear combination of atomic 

orbitals to form molecular orbitals.  

Let us consider the molecular orbitals arising from the 2s and 2pz orbitals – called the sigma 

orbitals. Among the four σ orbitals, two molecular orbitals arise from the positive combination of 

the atomic orbitals that gives rise to ‘bonding’ molecular orbitals. The bonding molecular orbitals, 

for a homonuclear diatomic molecule, is symmetric with respect to the centre of inversion and 

hence is called 𝜎𝑔 (sigma – gerade (even)) molecular orbital. Similarly, the negative combination 

of the orbitals give rise to the antibonding 𝜎𝑢 (sigma – ungerade) (odd)) molecular orbitals.  



Similarly, we can consider the 2px and 2py orbitals of the two atoms, which form four molecular 

orbitals of π symmetry. Since 2px and 2py orbitals are degenerate, the resulting molecular orbitals 

are also two-fold degenerate. One pair of these π orbitals is a positive (bonding) combination and 

the other pair is a negative combination (antibonding). For π orbitals in homonuclear diatomic 

molecules, the bonding orbitals are anti-symmetric with respect to centre of inversion (hence π𝑢) 

while the antibonding orbitals are symmetric (π𝑔).  

Using symmetry arguments, we obtained the 4 𝜎 and 4 𝜋 orbitals from two independent 

calculations. For electronic configuration, we can arrange the obtained molecular orbitals 

according to their energy and fill the available electrons following aufbau principle. For diatomic 

molecules, the exact value of the molecular orbital energy depends on the exact value of the 2s-2p 

separation energy of the atom, and the inter-nuclear distance. From accurate calculations, it is seen 

that the 1π𝑢 and 2σg orbitals switch their relative position. For oxygen and heavier atoms (in the 

2nd row) the corresponding diatomic molecular orbitals show 2σg having lower energy 1π𝑢, while 

the opposite is true for diatomic molecules with lighter elements (such as, N2, etc.). Please keep in 

mind, that accurate estimation of the energy and orbital composition requires explicit solution of 

the corresponding linear variational problem. The qualitative, diagrammatic representation of the 

molecular orbitals are quite useful in giving us an insight to chemical bonding, bond order, bond 

distance etc.  

Now, we can extend our discussion to heteronuclear diatomic systems, where the two atoms have 

different electronegativity, which affects the relative energies of the atomic orbitals. For example, 

in the diagram shown above, the 2s orbital of B is much lower in energy than that of the 2s orbital 

of A (when B is more electronegative). In such a case, the extent of mixing of the two orbitals is 

reduced, which influences the energies of the molecular orbitals. The final orbital energies and the 

wave functions can be obtained in a similar symmetry-adapted linear combination formalism 

within the linear variational method.  

In the next lecture, we will consider molecular orbital treatment of larger molecular systems. 

Thank you for your attention. 


