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Hello students! Welcome to this lecture. In last few lectures, we have been discussing the 

applications of variational method in describing chemical bonding. So, far we have discussed the 

valence bond theory which is an application of linear variational method to describe chemical 

bonding. Using valence bond theory, we discussed how we can obtain the energy and wave 

functions of hydrogen molecule, whose exact quantum mechanical solution is not possible. 

In this lecture, we will discuss another method to describe chemical bonding, i.e., the molecular 

orbital theory. We would discuss this widely used molecular orbital theory as an application of the 

linear variational principle. 
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Let us consider H2
+

, whose Hamiltonian (within Born-Oppenheimer approximation) is given by 

 

H2
+ consists of two hydrogen atoms with one electron. The first term is the kinetic energy of the 

electron, followed by potential energy of interaction between the electron and two nuclei (A and 



B). The last term is the inter-nuclear repulsion, a constant under Born-Oppenheimer 

approximation. Before attempting a solution of the above Hamiltonian, let us look at the following 

simplified cases,  

 

The above two equations represent the solution of two H-atoms (A and B), where 1sA and 1sB are 

the ‘atomic orbitals’ of the constituent atoms. According to MO theory, the molecular orbitals are 

linear combination of the atomic orbitals. Hence, we can propose a trial wave function (ϕ) as 

  

Since the trial wave function is a linear combination of two known function, we can apply linear 

variational principle to obtain the unknown coefficients c1 and c2. To that end, we need to solve  

 

Where, the overlap matrix elements are: 

The above relations are obtained by considering normalized functions for 1sA and 1sB, whose 

overlap is S (that depends on the inter-nuclear distance).  

Next task is to obtain the Hamiltonian matrix elements Hij. 



 

The first term is the energy of the H-atom (A) and the second term represents a Coulomb integral 

describing the interaction between the electron and the nucleus B as well as the inter-nuclear 

interaction.  

 

The above derivation requires a simple reordering of the Hamiltonian terms. The first term 

corresponds to the Hamiltonian of hydrogen B (1sB is the eigenfunction) and the second term 

describes the nuclear(A)-electron interaction and the inter-nuclear interaction. Just like in valance 

bond treatment, we see that the second term does not have a classical description like the one we 

had for the Coulomb term. We call this integral as the exchange integral. Both Coulomb and 

exchange integrals depend on the inter-nuclear distance. 
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Now since we have obtained all the integrals in the above secular equation, we can solve the matrix 

form of the determinant to obtain the eigenvalues and eigenvectors as, 

 

 

The energy expression has -0.5 au (energy of a H-atom) and some correction terms due to the 

chemical bonding. For R→ infinity, the second term in the energy expression becomes 0, which 

results in infinitely separated H-atom and a H+ nucleus. As they come closer, E+ develops a 

minimum at a certain intermediate R value, while E-
 increases monotonically (see the slide above). 

The two eigenfunctions appear a positive and negative linear combination of the two atomic 

orbitals with the pre-factor as the normalization constant. In other words, for 𝜙+, c1 = c2, while for 

𝜙−, c1 = -c2. A plot showing the two wave functions is given below 

1sA is given by the dashed blue line and 1sB is given by the dashed orange line. Their positive 

combination (𝜙+, 𝑙𝑒𝑓𝑡) yields the wave function shown as green line. There is a net buildup of the 

wave function between nuclei A and B. The negative combination (𝜙−, 𝑟𝑖𝑔ℎ𝑡) shows a vanishing 

wave function in between nuclei A and B. The mod square of the two wave functions (i.e., the 

probability density) is shown below: 

 



In case of 𝜙+, the electron probability density gets built-up between the two nuclei, while for 𝜙− 

the probability density reduces between the two nuclei. The former is a bonding orbital while the 

latter is an antibonding orbital, where we can see a node in between the two nuclei. 
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The wave functions we obtained are for H2
+. For H2, since the constituent atomic orbitals are the 

same as that of H2
+, we can use the same wave functions for H2, as the one we obtained for H2

+. 

We can fill both electrons of H2 in the bonding orbital and the resulting wave function is  

 

The first two terms of the above expression represent ionic form (where both electrons 1 and 2 are 

with nucleus A or nucleus B). The last two terms are essentially the wave functions of H2 that we 

obtained from valence bond theory.  

ϕMO = ϕionic + ϕvalence−bond 

The valence bond treatment exchanges the two electrons between the two nuclei, thereby providing 

a covalent character to the chemical bond. The molecular orbital, on the other hand, accounts for 

the ionic terms (i.e., possibility of both the electrons with one atom), in addition to the covalent 



terms. While the valence bond treatment completely ignores the ionic terms, the molecular orbital 

treatment over-estimates it by giving both ionic and covalent terms equal weightage. For an 

accurate treatment with molecular orbital theory, an unequal combination of ionic and valence 

bond character can be found out.  

We will extend our discussion on chemical bonding in larger molecules in our next lecture. Thank 

you for your attention. 


