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Hello students! Welcome to this lecture. In the last lecture, we were discussing about the 

application of linear variational method in chemical bonding. In particular, we were looking at the 

valence bond treatment of hydrogen molecule. We will continue our discussion from where we 

left in the last lecture. To refresh your memory, I will take you through the steps that we discussed 

so far.  

(Refer Slide Time: 00:59) 

 

We started by writing down the Hamiltonian of the system, the Hamiltonian has the usual kinetic 

energy and potential energy terms. For any variational calculation, the first step is to make a choice 

of the trial function. We designed our trial function (ϕ1) as a product of 1s functions of H-atom A 

and B. To ensure electron indistinguishability, we introduced ϕ2 where the two electrons of the 

two atoms have been exchanged. Finally, our trial function becomes the linear combination of 

ϕ1 𝑎𝑛𝑑 ϕ2. Since the trial function is a linear combination of two functions, the linear variational 

method tells me that I have to evaluate the overlap and energy integrals that appear in the secular 

equation. 
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(Refer Slide Time: 01:54) 

 

We first obtained the overlap integrals S11 and S12. Since the 1s functions are normalized, we found 

S11=1=S22. For S12, we obtained the overlap between ϕ1 & ϕ2.  We found that the term S12 = S2, 

where S is the overlap integral between the two 1s functions of the two atoms. We also discussed 

that value the overlap integral is function of inter nuclear distance, i.e., S = S(R). 

(Refer Slide Time: 02:45) 

 

We then looked at the energy integrals. We found that H11 = H22 = -1 + J(R), where J is the 

Coulomb integral.  
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 (Refer Slide Time: 03:48) 

 

Similarly, we obtained H12 = H21= -S2 + K(R), where K is the exchange integral., which is a 

quantum phenomenon with no classical description, which appears in our formalism because we 

have allowed electron exchange in our trial wave function. 

(Refer Slide Time: 05:01) 

 

So, given that we have derived all the matrix elements necessary for the solution of the two by two 

determinant, we can now proceed to its solution. If we express the problem in a matrix form, the 

solution will be obtained by diagonalizing the 2x2 matrix with eigenvalues and eigenvectors. 
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The two eigenvalues are:   

 

Both E+ and E- have -1 (the energy of 2 separated H-atoms in au) and a correction term arising 

from chemical bonding. These correction terms have Coulomb and exchange integral values, and 

the overlap integral value: all three terms depend on the inter-nuclear distance. Corresponding to 

the lowest energy solution (E+), the coefficients are obtained as,  

 

Similarly, the coefficients can be obtained for the higher energy solution (E-). Using these 

coefficients, the variationally optimized normalized wave functions (ϕ+ and ϕ−) can be written 

down as,  

 

(Refer Slide Time: 08:31) 

 

Now, let us look at how the energy changes with inter-nuclear separation, since we know that 

energy depends on the Coulomb, exchange, and overlap integrals, which have R dependence. A 

schematic diagram of the two energy solutions the E+ and E-  is shown in the slide above.  When R 
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→ ∞, both 𝐸± → -1 au (the energy of two separated hydrogen atoms). As the atoms come closer, 

the E+ develops a minimum at an intermediate R, while E- continues to rise. This difference arises 

due to the presence of the exchange integral, which contributes to the overall stability of the 

molecule.  

Now, let us look at the wave functions. The wave function we see here are normalized wave 

functions. But are these well-behaved functions? They are normalized, hence square integrable. 

Hence, they must be well behaved. However, it is important to point out that for a multi-electronic 

system, a well-behaved wave function should satisfy another criterion. 

(Refer Slide Time: 11:57) 

 

This relates to the so-called spin statistics theorem, which, in addition to the four postulates we 

discussed earlier, represents a new postulate. For a system of identical particles, the wave function 

must be anti-symmetric with respect to interchange of any two particles if the particles are fermions 

(ex: electrons) and it should be symmetric with respect to interchange of any two particles if the 

particles are bosons.  

Now let us find out, if our valence-bond wave functions are antisymmetric with respect to 

exchange of electrons.  
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Application of permutation operator (which interchanges the electron indices when applied on a 

function) on ϕ+ leads to the function itself. Hence, this function is symmetric with respect to 

electron exchange. We can also show that ϕ−, on the other hand, is anti-symmetric with respect to 

electron exchange (see slide above).  This suggest that our ground state wave function ϕ+ does 

not obey the spin-statistics theorem.   

(Refer Slide Time: 17:09) 

 

 

The reason behind this anomaly is the fact that our electronic wave function does not take electron 

spin into account. For a 2-electronic system, we can define the spin (operator) as the sum of the 

two spin operators (corresponding to the two electrons). We can use the angular momentum 

eigenfunctions as spin functions and use the fact that addition of two angular momenta (or spin) is 

also an angular momentum (or spin).  
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For a two-electron system, s = 0 or 1. For s = 0, there is one state (ms.= 0) and for s = 1, there are 

three states ( ms = -1, 0, +1). Together, these four spin functions form a complete set for a two-

electron system. These four functions are also written as  

 

The functions in the left side form a triplet state and the one shown in the right is a singlet state 

(you can verify this by applying S2 on these functions). It can be shown (by interchanging the 

electron indices) that the triplet functions are symmetric with respect to the electron exchange 

while the singlet state is anti-symmetric with respect to electron exchange.  

(Refer Slide Time: 24:20) 
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Now, we have this interesting situation where we have ϕ+ is symmetric with respect to electron 

exchange and ϕ−,  is anti-symmetric with respect to electron exchange. Additionally, we have the 

spin functions where the triplet is symmetric and singlet is anti-symmetric with respect to electron 

exchange. The spin statistics theorem tells the overall wave function must be anti-symmetric with 

respect to electron exchange. The overall wave function has a spatial component as well as a spin 

component. To obtain the overall antisymmetric wave function, we consider ϕ+ with the 

antisymmetric singlet spin function and consider ϕ− with the symmetric triplet spin function. 

Thus, the final well-behaved ground-state antisymmetric wave function can be written as: 

 

You can write down the same for the excited state. But, here let us consider the ground state alone. 

The above wave function (written without the normalization constant from the spatial part) is a 

well-behaved function for a two-electron system. 

 

 (Refer Slide Time: 26:43) 
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If we expand the above mentioned wave function we get: 

 

In the first term, we see electron 1 has a spatial identity (1sA) and a spin identity 𝛼 and the electron 

2 is a 𝛽 electron in 1sB. We see that each electron has now a spatial function and a spin function. 

Together, we call this function a spin-orbital (as opposed to an ‘orbital’ which has only a spatial 

identity and can take two electrons of different spin).   

We can rearrange the above expression for the wave function in a more compact form as 

where the overbar sign indicates 𝛽 spin. The above form of the wave function is a determinantal 

function, known as the Slater determinant. In a future lecture, we will discuss the Slater 

determinant way of writing wave function in more details.  

In this lecture we discussed the valence bond treatment of hydrogen molecule, which can be 

extended to larger systems by following the same strategy adopted here. The key feature of valance 

bond treatment is the exchange or interchange of the valence electrons of the constituent nuclei. 

This leads to the introduction of the exchange integral that provides the stability to the molecule.  

In our next discussion, we will look at other ways of describing chemical bond and we will 

continue our discussion on approximate methods in quantum mechanics. Thank you for your 

attention. 
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