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Lecture - 13
Variational Method in Chemical Bonding - 2

Hello students! Welcome to this lecture. In the last lecture, we were discussing about the
application of linear variational method in chemical bonding. In particular, we were looking at the
valence bond treatment of hydrogen molecule. We will continue our discussion from where we
left in the last lecture. To refresh your memory, | will take you through the steps that we discussed
so far.
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We started by writing down the Hamiltonian of the system, the Hamiltonian has the usual kinetic
energy and potential energy terms. For any variational calculation, the first step is to make a choice
of the trial function. We designed our trial function (¢,) as a product of 1s functions of H-atom A
and B. To ensure electron indistinguishability, we introduced ¢, where the two electrons of the
two atoms have been exchanged. Finally, our trial function becomes the linear combination of
¢, and ¢,. Since the trial function is a linear combination of two functions, the linear variational
method tells me that | have to evaluate the overlap and energy integrals that appear in the secular
equation.

93



(Refer Slide Time: 01:54)
L U

Linear Variational Principle in Chemical Bonding

Al eAA > 01 = Lsa(1)1sp(2)
Valence Bond Treatment of H b= 1s,lsp 1)

0 =101 + 20

Overlap Integrals

S = (Lsa()1sp(2)[Ls (1) 1sp(2))

7/ ls l(“]%\[]) ar I/ ]h” _]l.\‘[}'j) ([7'-_7

= l = S‘_T'_?

S = (lslll‘lil.s/;(f)‘l&l(iilslg[l])
= / L8y (1)1sp(1) dry / 1sp(2)154(2) dry

= =5y

We first obtained the overlap integrals S11and Si2. Since the 1s functions are normalized, we found
S11=1=Sz,. For S12, we obtained the overlap between ¢, & ¢,. We found that the term Si» = S?,
where S is the overlap integral between the two 1s functions of the two atoms. We also discussed

that value the overlap integral is function of inter nuclear distance, i.e., S = S(R).
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We then looked at the energy integrals. We found that Hiy = Hx, = -1 + J(R), where J is the

Coulomb integral.
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Similarly, we obtained Hiz = Ha1= -S? + K(R), where K is the exchange integral., which is a
quantum phenomenon with no classical description, which appears in our formalism because we

have allowed electron exchange in our trial wave function.
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So, given that we have derived all the matrix elements necessary for the solution of the two by two
determinant, we can now proceed to its solution. If we express the problem in a matrix form, the

solution will be obtained by diagonalizing the 2x2 matrix with eigenvalues and eigenvectors.
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The two eigenvalues are:

JE K

B, = —1
* S

Both E+ and E. have -1 (the energy of 2 separated H-atoms in au) and a correction term arising
from chemical bonding. These correction terms have Coulomb and exchange integral values, and
the overlap integral value: all three terms depend on the inter-nuclear distance. Corresponding to
the lowest energy solution (E-+), the coefficients are obtained as,

1
V20 + 52

Similarly, the coefficients can be obtained for the higher energy solution (E.). Using these
coefficients, the variationally optimized normalized wave functions (¢, and ¢_) can be written

down as,

1 ‘
P+ = m(ﬁﬁl + @)
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Is this wave function well-behaved?

Now, let us look at how the energy changes with inter-nuclear separation, since we know that
energy depends on the Coulomb, exchange, and overlap integrals, which have R dependence. A

schematic diagram of the two energy solutions the E+ and E- is shown in the slide above. When R
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- oo, both E; > -1 au (the energy of two separated hydrogen atoms). As the atoms come closer,
the E+ develops a minimum at an intermediate R, while E. continues to rise. This difference arises
due to the presence of the exchange integral, which contributes to the overall stability of the

molecule.

Now, let us look at the wave functions. The wave function we see here are normalized wave
functions. But are these well-behaved functions? They are normalized, hence square integrable.
Hence, they must be well behaved. However, it is important to point out that for a multi-electronic
system, a well-behaved wave function should satisfy another criterion.
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This relates to the so-called spin statistics theorem, which, in addition to the four postulates we
discussed earlier, represents a new postulate. For a system of identical particles, the wave function
must be anti-symmetric with respect to interchange of any two particles if the particles are fermions
(ex: electrons) and it should be symmetric with respect to interchange of any two particles if the

particles are bosons.

Now let us find out, if our valence-bond wave functions are antisymmetric with respect to

exchange of electrons.
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Application of permutation operator (which interchanges the electron indices when applied on a
function) on ¢, leads to the function itself. Hence, this function is symmetric with respect to
electron exchange. We can also show that ¢_, on the other hand, is anti-symmetric with respect to
electron exchange (see slide above). This suggest that our ground state wave function ¢, does

not obey the spin-statistics theorem.

(Refer Slide Time: 17:09)

Linear Variational Principle in Chemical Bonding
Valence Bond Treatment of H,: electron spin
0+ = : - (01 £ )

01 = Lsa(1)1sp(2)
VTS 0y = 154(2)1s5(1)

For one electron system:

|a) = s(s + )a) o) ’lw
$(8) = s(s + 1)h%8) g P
L el / 18) = =518)

For two electron system:

s+l s=18

|s.m,) = 10,0), |1,0), |1, £1

The reason behind this anomaly is the fact that our electronic wave function does not take electron
spin into account. For a 2-electronic system, we can define the spin (operator) as the sum of the
two spin operators (corresponding to the two electrons). We can use the angular momentum
eigenfunctions as spin functions and use the fact that addition of two angular momenta (or spin) is

also an angular momentum (or spin).
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For a two-electron system, s =0 or 1. For s = 0, there is one state (ms.= 0) and for s = 1, there are
three states ( ms = -1, 0, +1). Together, these four spin functions form a complete set for a two-
electron system. These four functions are also written as
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The functions in the left side form a triplet state and the one shown in the right is a singlet state
(you can verify this by applying S? on these functions). It can be shown (by interchanging the
electron indices) that the triplet functions are symmetric with respect to the electron exchange

while the singlet state is anti-symmetric with respect to electron exchange.
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Now, we have this interesting situation where we have ¢ is symmetric with respect to electron
exchange and ¢_, is anti-symmetric with respect to electron exchange. Additionally, we have the
spin functions where the triplet is symmetric and singlet is anti-symmetric with respect to electron
exchange. The spin statistics theorem tells the overall wave function must be anti-symmetric with
respect to electron exchange. The overall wave function has a spatial component as well as a spin
component. To obtain the overall antisymmetric wave function, we consider ¢, with the

antisymmetric singlet spin function and consider ¢_ with the symmetric triplet spin function.

Thus, the final well-behaved ground-state antisymmetric wave function can be written as:
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You can write down the same for the excited state. But, here let us consider the ground state alone.
The above wave function (written without the normalization constant from the spatial part) is a

well-behaved function for a two-electron system.
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If we expand the above mentioned wave function we get:

1 , .
7 [1s4(1)1sp(2)ar B2 — 1sa(1)1sp(2)as B1 + 1sa(2)1sp(1)ay B2 — 1sa(2)1sp(1)as 5r)

In the first term, we see electron 1 has a spatial identity (1sa) and a spin identity a and the electron
2 is a f electron in 1sg. We see that each electron has now a spatial function and a spin function.
Together, we call this function a spin-orbital (as opposed to an ‘orbital” which has only a spatial

identity and can take two electrons of different spin).

We can rearrange the above expression for the wave function in a more compact form as

1 [l1sa(1) Isg(D)]  [1sp(1) Tsa(1)

\/5 18A(2) 183(2) 18}3(2) 1SA(2)

where the overbar sign indicates S spin. The above form of the wave function is a determinantal
function, known as the Slater determinant. In a future lecture, we will discuss the Slater

determinant way of writing wave function in more details.

In this lecture we discussed the valence bond treatment of hydrogen molecule, which can be
extended to larger systems by following the same strategy adopted here. The key feature of valance
bond treatment is the exchange or interchange of the valence electrons of the constituent nuclei.

This leads to the introduction of the exchange integral that provides the stability to the molecule.

In our next discussion, we will look at other ways of describing chemical bond and we will
continue our discussion on approximate methods in quantum mechanics. Thank you for your

attention.
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