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Variational Method in Chemical Bonding - I 

Hello students! Welcome to this lecture. In last few lectures, we have been discussing variational 

principle and in particular the linear variational method and its applications. In this lecture, we 

would apply linear variational principle in one of the most important topics in chemistry:  chemical 

bonding.  
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Our first example system is the hydrogen molecule. In the previous lecture we discussed the 

Hamiltonian of the molecule and formed the trial function as a linear combination of two functions, 

each of which were obtained from the 1s functions of the constituent atoms. This trial function 

ensured the indistinguishability of the electrons in a molecule. 

With the given Hamiltonian and the trial function, we can try to solve the problem using linear 

variational method. To that end, we would first obtain the overlap and Hamiltonian matrix 

elements.  
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First, we will discuss the overlap integrals. The term S11 can be written as the overlap of ϕ1with 

itself, as shown below: 

 

Here the terms depending on electron 1 and electron 2 are integrated separately as they are 

independent variables. Each of the integral is 1, since the 1sA and 1sB functions are normalized.  

Next, we determine the overlap integral S12 following a similar approach: 

 

Here each integral (for electron 1 or 2), contains 1sA and 1sB functions, which are eigenfunctions 

of two different systems (atom A and B). Hence, they are not orthogonal. Rather their overlap 

integral has some finite value depending on the relative separation of the two nuclei. When the 

two nuclei come closer to each other, this overlap integral will become larger and in the 

hypothetical situation where both atoms are on top of each other, the overlap becomes 1. With 



increasing separation of the nuclei, the overlap integral decreases and eventually becomes 0 when 

the atoms are well separated (see the figure in the slide above). Hence, for a given inter-nuclear 

separation (R), each integral in the overlap integral expression above becomes a constant (S) and 

the value of S12 = S2 = S21
.  
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Now, let us look at the energy integrals. First let us evaluate 𝐻11 = ⟨ϕ1|𝐻̂|ϕ1⟩. Here the 

Hamiltonian (within Born-Oppenheimer approximation) has the following form: 

 

where the first two terms (h1 in red) constitute the Hamiltonian of atom A and the next two terms 

(h2 in green) describe the Hamiltonian of atom B, whose solutions are given below 

  

 The remaining four terms appear due to the interaction of the two atoms (both for nuclei and 

electrons). These terms are absent when there is no chemical bond.  

 



Now we can evaluate H11 

 

First consider the action of h1 and h2 operators (using the fact that 1sA 1sB are their eigenfunctions), 

 

Each of the above terms gives -0.5 (au). 

This leaves us with the action of h’, which is given below 

 

The above expression requires evaluation of 4 integrals (one for each operator). When we evaluate 

these integrals, we should separate the terms that depend on electron 1 and electron 2 and integrate 

them separately. For example, for -1/r1B term we can write 

 

where we have used ∫ 1𝑠𝐵
∗ (2)1𝑠𝐵(2)𝑑𝑟2  =  1 to obtain the above expression. We can do similar 

exercise for other terms to obtain H11 as  

 

The first term -1 appears from h1 and h2 part of the Hamiltonian, which represents the energy 

expectation value when the two atoms are well separated. The second term represents the attractive 

Coulomb interaction between the nucleus B and the electron density corresponding to electron 1 

(present in nucleus A). Similarly, the third term represents the attractive Coulomb interaction 

between the nucleus A and the electron density corresponding to electron 2 (present in nucleus B). 

The last two terms are repulsive Coulomb interaction between the two electrons and the two nuclei. 

The last four terms of the above expression are together called the Coulomb integral (J), which has 

a definite value for a fixed inter-nuclear distance. Hence, H11 = -1 + J(R) = H22. 
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Next, we evaluate H12. Just like the previous case, we will simplify the total Hamiltonian to a few 

simple terms:  

 

The h1 and h2 are rearranged in a slightly different way compared to the previous case (H11). This 

has been done by keeping the form of the function in the ket (here it is ϕ2 = 1𝑠𝐴(2)1𝑠𝐵(1)), such 

that we can write the following (by realizing that 1sB(1) is now eigenfunction of h1 and 1sA(2) is 

the eigenfunction of h2): 

 

After taking care of h1 and h2, we are left with four terms (h’). Following the same procedure as 

earlier (evaluating the integrals by separating the terms dependent on r1 and r2), we obtain  



  

h1 acts on its eigenfunction (1sB(1)) leaving behind two overlap integrals (each of which has been 

earlier defined as S) resulting in -0.5S2. Similarly, the second term (related to h2) yields -0.5 S2. 

Next, we consider the third term which is sum of four different integrals. Each of these integrals 

is a product of two integrals (one for variable r1 and the other for r2). Take for example, -(1/r1A) 

operator (which depends on electron 1), we can collect all terms with electron 1 dependence and 

all terms with electron 2 dependence and then integrate them separately, as shown below:  

 

When we look at the first integral above we see that electron 1 is exchanged between A and B 

atoms (in left- and right-hand side of the operator). Unlike the previous case of H11, where we 

defined a Coulomb integral, here we can not have a physical description of the electron. This is a 

pure quantum phenomenon that appears in our equations, because we have 𝜙2 in our trial function 

which exchanges the two electrons. Similarly, we can show it for the rest of the terms in our 

Hamiltonian: 

 

 

Together, these integrals are called ‘exchange integral’ (K). All of them they appear due to the 

exchange of electrons upon chemical bonding. Just like the Coulomb integral (J), the exchange 

integral also appears when the two atoms come closer and make a bond. But when they are well 

separated both these integrals vanish. In other words, like Coulomb integral, the exchange integral 

also is a function of inter-nuclear separation (R).  

In our next class, we will use these integrals and continue our discussion on valence bond theory.  

Thank you for your attention.  


