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Applications of Linear Variational Method 

 

Hello students! Welcome to this lecture. In the previous lecture, we started discussing linear 

variational method. In linear variational method, we express our trial function as a linear 

combination of several known functions. In this lecture, we would look at a few applications of 

the linear variational method.  
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The first example concerns the polarizability of hydrogen atom. We formulated the problem in the 

last lecture. Just to refresh your memory, we are studying H-atom in the presence of an external 

electric field applied along z-direction. This causes a redistribution of the electron charge cloud 

around the nucleus developing a dipole moment that is proportional to the applied electric field 

with the proportionality constant representing the polarizability. The total Hamiltonian of this 

system comprises of the Hamiltonian of a H-atom and the potential energy of interaction of 

electron and the electric field. To solve this new Hamiltonian using variational approach, we 

considered a trial function as a linear combination of 1s and 2pz eigenfunctions of H-atom. This 

leads to the 2x2 secular determinant shown above.  



The next step of carrying out the variational calculation is the evaluation of the overlap and 

Hamiltonian matrix elements (Sij and Hij). Since 𝜓1𝑠 and 𝜓2𝑝𝑧 are orthonormal functions (being 

the eigenfunctions of a Hermitian operator), S11 = S22 = 1 and S12 = S21 = 0.  
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Now let us determine the Hamiltonian matrix elements. H11 is obtained as the energy expectation 

value for ψ1𝑠, i.e., 

 

The first term is the ground state energy of H-atom (-0.5 au) and the second integral becomes 0 

when the integration is carried out for theta variable. From symmetry arguments, the second term 

has 𝑟 cos 𝜃, which is anti-symmetric with respect to reflection along the XY plane, thus making 

the integral 0. Similarly, H22 can be obtained as  

 

Where the first term is the energy of 2pz orbital of H-atom (-0.5/4 au or -1/8 au) and the second 

term vanishes (can be shown by explicit integration or similar symmetry arguments discussed 

earlier).  



The matrix element H12 is obtained as,  

 

Where the first term is zero (after action of Hamiltonian on its eigenfunction 2pz, we will end up 

with an overlap of 1s and 2pz eigenfunctions as they are orthogonal). Now, the second integral is 

over 𝑑𝜏 = 𝑟2𝑑𝑟 sin 𝜃 𝑑𝜃 𝑑𝜙. We can use the functional form of 𝜓1𝑠 and 𝜓2𝑝𝑧 and carry out the 

integration over 𝑟, 𝜃, and 𝜙. After some algebra (use the formula given in the slide for integration 

over r) we obtain H12 as shown above. It can be shown H12=H21 (Hermitian operator).  

If we plug in the matrix elements in the secular equation, we get 

 

The solution of the above equation results in two values of energies and each energy corresponds 

to a set of c1 and c2, that can be used to express the variationally optimized wave functions.  
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Now, let us discuss the solution of the secular equations obtained from a simple numerical 

calculation. In the slide shown above, energy (in au) is plotted against increasing value of the 



electric field (𝜖). When the applied electric field is 0, the lower state is 1s (-0.5 au) and the upper 

state is 2pz (-0.125 au). As the external electric field is applied, the system gets polarized and as a 

result, the 1s energy decreases while the 2pz energy increases. The second figure shows the change 

in the coefficients corresponding to the lower energy solution. When electric field is 0, |c1|
2 = 1 

and |c1|
2 = 1, i.e., the lowest state is 100% 1s state, as expected. As the electric field is increased, 

|c1|
2 starts decreasing while |c2|

2 stars increasing, suggesting an increased contribution of 2pz to the 

ground state wave function.  

Now, to obtain the polarizability, we can see how the energy of the lowest state is changing, and 

we can evaluate Δ𝐸 (the change in energy with respect to the energy at 0 field) and use Δ𝐸 =

−αϵ2/2, to obtain the value of α (the third figure in the slide above). Since the equation we used 

is valid for weak field, we can estimate α from very small values of ϵ, which turns out to be 2.91, 

a good approximation to the experimental value. 

Now, of course, there is a lot of room for improvement. However, with a very little additional 

calculation, we can get a somewhat good estimation of the polarizability of hydrogen atom. Mind 

you, so far in this exercise, we have evaluated only one additional integral that was H12, all other 

integrals were simply what we already knew from hydrogen atom solutions.  
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Now, we would use the linear variational principle to one of the most important topics in chemistry, 

that is, chemical bonding. In chemistry we are often interested in the formation or the breaking of 

a bond during a chemical reaction that can be an organic, inorganic, extended solid state, or 

biochemical reaction. A chemical bond formation or breaking always involves sharing of electrons 

or transfer of electrons, that are pure quantum mechanical phenomena. In our present discussion, 

we will restrict ourselves to the bonding in simple system, although the formalism can be easily 

extended to larger and more complex system with the help of a computer.  

Let us first discuss the application of linear variational principle in the valence bond treatment of 

hydrogen molecule, the simplest of the systems where a chemical bond is present. The first step 

of our approach is to write down the Hamiltonian of the molecule (written in au), 

  

The first term is the kinetic energy of the two nuclei (hydrogen atom A and B). The second term 

is the kinetic energy of electrons and the third term is the electron-nuclear interaction. The last two 

terms are inter-electronic and inter-nuclear repulsion terms. With the given Hamiltonian of the 

problem, we would try to design our trial function. Since the hydrogen molecule is composed of 2 

hydrogen atoms, we can take use 1s function of each hydrogen atom and construct the trial function 

as,  

But this wave function has a problem. When a bond is formed, the electrons are indistinguishable, 

while the above wave function distinguishes the electrons according to their nuclei. To invoke 

indistinguishability of electrons into my trial function, we can introduce, 

 

and express the trial function as a linear combination  

 

The above wave function preserves the indistinguishability of electrons.  

We have now defined the Hamiltonian and trial wave function. We will carry out the remaining 

part of the variational calculations in the next lecture.  



Thank you for your attention. 


