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Welcome, to the course in Molecules in Motion. We are still discussing things subjects

on topics on Kinetic theory of gases, and it includes a number of things I think which I

would try to go into detail,  but I do not know whether you will  be interested in the

mathematical part of the derivations.

(Refer Slide Time: 00:45)

In the last class, what we had talked about? We had talked about the distribution function

for velocity distribution function,  Maxwell-Boltzmann distribution,  you can say Marx

Maxwell’s  distribution  you  would  usually  Boltzmann  distribution  is  associated  with

energy,  but  we  usually  say  that  it  is  a  Maxwell-Boltzmann  distribution.  So,  the

distribution function we have derived we this is the expression which we have derived. I

am go not going to go into the detail because we are going to now discuss the features of

the Maxwell distribution function.

So, if you remember the representation of the x and y axis of the distribution function.

So, it is a probability distribution. So, the total area is going to be summing up to one and

the area under the curve represents that the total number of molecules of the gas and a



fixed volume. So, the volume is a fixed the total number of gas molecules enclosed is

fixed. So, the probability which we are evaluating will be always normalized to one.

So,  the y axis  is  always not  particularly  different  books follow different  parameters.

What we are looking into? We are looking into the probability densities along of finding

a molecules in the speed range v and plus v plus delta v, but in some books you will find

it is written in as the fraction of molecules in the speed having the speed in the range of

this or in some books you can still find that the fraction of molecules in the speed range v

plus delta v per unit velocity interval, or speed interval.

So, the per unit whenever you are talking about then you actually divided by the dc or dv

whatever term you have and x axis is always the speed, ok. So, this is the feature which

we are looking into and this is the function which we are going to evaluate and try to

understand the various distribution.

(Refer Slide Time: 02:52)

So, what we have here? Here you see this is the distribution functions, sorry, that it is

slightly distorted. So, I am not going to look into what the values are looking in showing

I am just looking at the this is the distribution function, y axis this is the dv is the unit in

which we are changing the velocity, this is the v axis and this is the unit in which we are

interested the dv this is the velocity interval infinitesimally small velocity interval into

which we are looking into.



So, that observes speed distribution of gas molecules in thermal equilibrium is shown in

figure, ok. The number of molecules having in the speed in the range v plus delta v is

equal to the area of the shaded triangle. So, what is the when I am talking about v plus v

plus delta v, I am looking into this dv is the area of the shaded triangle, that is f of v into

dv this is a area represents the f of v into dv. This is the interval, the infinitesimally fall

small  velocity  interval  and when I  multiply  in  the  distribution  with  this  distribution

function with the dv then I get f of v dv is the shaded area, ok.

So, the function f of v approaches 0 as v approaches 0, as v approaches infinity, sorry

when will the f of v approach 0. You have this expression, from this expression you can

see when will this approach 0. You have this expression the velocity is here in this term

here it is there in the exponential term. So, where are the velocities included here it is

square and here it is exponential, ok.

So, when we are talking about exponential term if this is the part which we are looking

into then what should be the function approaches when will the function approach is 0.

In this expression if you put in this function approaches 0 only when this is going to be

approaching  infinity  this  becomes  very  high.  So,  this  is  one  of  the  features  of  the

Maxwell’s distribution or Maxwell’s Boltzmann’s distribution which we have taken the

expression.

(Refer Slide Time: 05:46)



Now, and look into another feature of it. To find suppose I want to find the probability

that  a molecule will  have a speed in the range say thirty to forty meters per second

suppose this is the speed 30 and this is the speed 40 and I have a distribution function

given by this. Here you see I have write it is written relative number of molecules the

relative number also means that this the fraction of numbers, relative means I am taking

a  ratio  of  numbers  or  I  am taking  the  probability  function  with  respect  to  the  total

number of molecules. So, it is a division fraction it is a fraction basically, which we are

representing the relative number of molecules which I am going to evaluate. So, I have to

find out the probability that molecule will have a speed within the range v 1 to v 2 and

we this v 1 and v 2 suppose I am saying this is 30 to 40 meters per second.

So, for finding out that what we do, we integrate from in distribution function within the

two limits. These are the two limits v 1 and v 1 and v 2. So, this is 30 and 40. So, I put a

line and adds you may draw the first I have the probability distribution curve now I fix

the two values which I am looking into 30 meters per second and 40 meters per second. I

mark that and integrate the area within these two limits.

So, when I get the when I integrate the area bet between the two limits then I get this

shaded  area  and  this  shaded  area  of  the  curves  is  equal  to  the  probability  that  the

molecule will have a speed in the range say 30 to 40 meters per second or between v 1 to

v 2. So, to find out the probability that the molecule will have speed in the range v 1 to v

2 we integrate the distribution between the two limits. The area and integration integral is

equal to the area of the curve between the two limits and as is shown in the shaded here.



(Refer Slide Time: 08:09)

Now, what happens if you look at the expression of the distribution function, you see this

the distribution function looks something like this. It is a decay function. Why it is a

decay function?  You see  the expression here;  the  expression is  e  to  the  power raise

something to the power minus and that is square suppose this is m is constant for the gas.

So, it is the velocity which is changing and if it is a so, if the velocities are changing so,

depending on the velocities I can say this is e to the power x minus x square, when I am

saying the velocities are changing. So, this is e to the power minus x square I get is

something like that.

So, the exponential decay function in terms of the value here which we have written

already  or  in  terms  of  the  R  if  you  multiply  by  the  Avogadro’s  number  both  the

Boltzmann constant with the multiplication with the Avogadro number gives you the R

and small m multiplied with the Avogadro number gives you the molar mass.

So, this will be the other expression. So, what if this implies this implies the decay the

exponent function implies that the fraction of molecules with very high speed very high

speed means v is very large v will be very small, because this is exponential term this

exp becomes very small when we are approaching these values are very high.

So, this is going to be if this is very high if this is very high then what you have, the

fraction of molecules very will be very small because the e to the power expression is



raised to the power minus x square and x square here is the velocity x is the velocity. So,

velocity square, but it is a minus term.

So, what we what it implies? The fraction of molecules with very high speed will be very

small when the speed of the molecules are very large here because this is the exponential

term exponential in a term is a minus term that means, it is a decay and this decay term

mainly indicates of all the number of molecules with very high speed will be very will be

small will because it you are dealing with the exponential term and this exponential term

is say e to the power minus x square, if I say this x represents the velocity then as the

velocities  are  very  large  than  the  decay  we  have  a  decay.  So,  then  the  fraction  of

molecules with very high speed becomes small, just because it is a decay function.

So, next one what happens then again you look into the parameter. Here, we have already

divided by the multiplied and divided the numerator by the Avogadro number. So, the

factor 2 by M by 2 kT this there are two factors. You see e is dependent on the velocity

and it is dependent on M by 2 kT 2 RT.

So, these are two parameters which is which we can separate out v squared term and m

by 2 RT term. So, these the factor m by 2 RT multiplying v square in the exponent is

large when the molar mass is large,  for a fixed value of v. Suppose, I can have this

fraction the factor m multiplied by v I have a factor I am multiplying this that velocity by

another factor. This factor is dependent on the mass because it is capital N by 2 RT R is

fixed. Suppose, I am talking about a given temperature for a given temperature I have

this M f v multiplied by a term which is m by 2 by RT.

So, this factor m by 2 by RT multiplied by the v square in the exponent exponential term

is large when the molar mass is large, ok. So, this exponential term it is a decay term

remember it is going to give you a higher these value is lower will be the higher will be

the decay and lower will be the value. So, what we have? We have a higher molecular

weight factor multiplied into the exponential factor which is already having a v square.

So, the exponential factor goes more rapidly towards 0, when the mass is large.

So, if you are dealing with large masses the decay will be faster. That i s, the heavy

molecules  are  unlikely  to  be  found at  a  higher  speed,  right.  So,  if  you are  doing a

selection of the molecules if the if you are talking about higher molecular weight species

what you have? You have them in the heavier molecules will not be found in the high



speed region. So, because you here you are multiplying m by 2 kT into this and this is an

exponentially  decaying term,  right.  If  it  is an exponential  decaying term if  you have

larger values the decay will be faster.

o, if you are having larger value the exponential goes rapidly towards 0, it approaches

towards 0 very rapidly. That is, a heavier molecule that the heavier the molecule is faster

is their decay. So, you will when we are talking about high speeds, these are the regions

you can see it should be with the high speeds the molecular weight of the molecule gases

which are having high molecular weight will be very less found in this region.

(Refer Slide Time: 15:04)

Another thing you can look into. You have seen 3 temperatures and temperature 20 of

distribution function at 200, 600 and 1000. You see how the distribution function looks

how is the peak changing and how the shape of the graph is changing.

Now, when the temperature is high when the temperature is high you see temperature is

in the denominator of the exponential term. When the temperature is high then the factor

M  by  2  RT in  the  exponential  is  small.  So,  the  exponential  factor  falls  towards  0

relatively slow as we increases. So, as we increase the speed as we increase the speed

which is going to be slower, when the temperature is when the temperature is high this

factor  which  you  are  looking  into  in  the  exponent  is  small,  this  is  high.  So,  the

exponential is small and since the exponential is negatives an exponential. So, decay will

be smaller.



So, the exponential  factor towards 0, the exponential  factor falls towards 0 relatively

slowly, as we increase the speed. So, as the higher the speed which we are looking into

higher the speed of the molecules which we have lower will be the rate at which they

decay when the temperature is higher, as we increase the speed.

So, when you see that temperature 200, 600 and 1000 you are increasing the temperature.

What you are increasing is, you are increasing the decreasing the exponential term and

which is a negative term. So, the decay is reduced. So, what you have the exponential

factor that falls towards 0 is relatively slow as you increase the temperature.  So, you

have a wider distribution in speed, understood?

So, in other words the greater fraction of molecules can be expected to have higher speed

at higher temperature then at lower temperatures. Did you understand? It under in other

words we are saying the greater fraction of molecules can be expected to have higher

speed at higher temperature. The fraction of molecules with higher speed will be higher

at higher temperature than that of the fraction which is at lower temperature, ok. So, as

you see the broadness of the curve is going to be more sharp when you have lower

temperature, but the total area if the gas is the same and use in you are using the same

volume of the gas then the area under the curve will be all constant. So, all should be

adding up to the probability equal to 1. So, this area under the curve will be always

constant,  but  how  the  speed  distribution  is  going  to  be  shifting  depending  on  the

exponential term of the distribution function can be really easily understood.

So, two factors we have already discussed what we, one will  be the when you have

higher mass higher mass of the gases, if you are having higher mass the exponential

decay will be faster because the number and the exponential factor is becoming high. So,

the decay is faster. So, when you are having the fraction with high molecular weight will

be always less when you are having going towards 0, that the when we are falling in the

when the distribution is falling towards 0.



(Refer Slide Time: 19:11)

So, how will that look like I think I do not have that distribution function for two or three

different masses.

(Refer Slide Time: 19:18)

Now, so, this is another look you can have which we have just now discussed; the gas

molecules at low temperature, how the gas molecules look at room temperature and how

the gas molecule distribution looks like at the high temperature. So, the factor v square

the term which we have here is a multiplies the exponential. This factor goes to zero and

the fraction of molecules with low speeds will also be small.



So, we have now taken two factors; one is this part and other this is other part. So, now,

while if I take the factor v square into contribution not the exponential.  So, from the

factor v square what we have, v square multiplies by the with exponential term ok, the

fact this factor goes to zero as we goes to zero. So, the fraction of molecules with very

low speed will also be very small. The remaining factor the terms of parentheses of 4 pi

and that is simply is ensures they when we add the fractions all over the range of the

speed from zero to infinity then we get a value equal to 1.

(Refer Slide Time: 20:35)

Now, the let us see how the peak shifts. As you increase the temperature, this is the temp

peak  here  the  peak  shifts  towards  higher  temperature  as  we  increase  the  speed

temperature of the system. The peak shifts as the to the right side as the temperature is

and right  side means you towards higher  speed,  this  is  the speed which we are like

having this shows the average speed increases with increase in temperature. Asymmetric

curve occurs because the lowest pass possible speed is 0 and the highest is infinity. So,

this is a Gaussian error type graph and it is asymmetric graph this will extend to infinity

and starts from 0.



(Refer Slide Time: 21:25)

Now, there are two or three important factors which we need to look into. What is the

most probable speed, what is the mean speed and what is the root means? What is root

mean square speed, which we have already discussed, how we have evaluated we have

taken into account. But, what is the in this figure you will see there we can numerically

evaluate  this  expressions  for  average  speed and  the  rms  speed,  as  well  as  the  most

probable speed. I have given you one slide in the previous class where it from where you

can evaluate, but I think I will give us give it that as miss right now.

The most probable speed is represented by this. As you see when you have a distribution

this is the highest maximum possibility. So, this is the maximum possibility of the gas

the molecules will have the speed as, but that is not the speed of the entire that is not the

highest speed as you see. If you take the mean speed you the mean speed is in between

the most probable speed and the rms speed. rms speed value is the highest value.
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As you can see from the expression I have not derived the expression, but we can easily

we can numerically derive from the integration of this using the standard integrals. What

we have derived is the rms speed we have already derived the rms speed, but we can

numerically using a standard integral values we can evaluate this. We can find out what

the average velocity is what is the most probable velocity. If you arrange them you will

see this is how it is going to look like.

The rms speed is the highest value in speed and the average is in between the rms and the

most probable. Most probable is the speed which is the most of them all gas molecules

are likely to have the highest number of molecules are likely to have, but that is not the

maximum speed of the distribution function.
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Similarly,  as  we  have  for  the  velocity  this  can  be  extended  to  the  energy  because

Boltzmann distribution and Boltzmann Maxwell’s distribution is actually was derived for

the energy distribution. So, if you have the speed if you have the speed then you can

easily derive the expression for energy, right in. In fact, we it is the other way round from

the energy we have derived the speed, but here again we are going to go back and see

how the speed distribution can be converted to energy distribution.

The kinetic energy of a molecule as you know is epsilon a half mv square. So, this mv

square  we are  if  we are  looking into  the  root  mean square  velocity  which  we have

derived for the distribution function, please ignore these are typographical errors do not

ignore these two points.

So, what we have we are going to find out what is v, from this expression from the

velocity equal the half mv square equal to the energy. From this expression we will find

out what is the velocity and we what we are looking into? We are looking into a velocity

interval dv. So, if we want to find out what is the dv in terms of the energy what you

want you can we can write, you have this expression for v differentiate what you have dv

1 by m to the power half e to the power minus half because this is you have e to the

power half here and dE.

So, this is the ene this represents the energy range dE corresponds to the speed range

corresponding to the speed range dv. So, the fraction of molecules that have the speeds



dv in the range in the speed range v plus dv corresponds to the fraction of molecules that

have the kinetic energy in the range de and dE plus e plus dE.

So, the energy, what I am trying to say the energy range we have for dE corresponds to

the same velocity range which we are looking into. We are not taking any separate thing

we are looking into the same velocity range in which we are looking into this energy of

the molecules. So, we are looking into the same dE corresponding to the same value

coming out from the value which we have for the dv the interval of velocity.

The fraction of molecules within this dv is the speed that is in the speed range v plus dv

will be the fraction of molecules which will be having in the same velocity range, but

with the energy will be having e and e plus dE. I am not going to do go into the details of

the derivation, but you can have this distribution function represented as this. You can do

it  if  you want to, but the distribution function is something like this when dE is the

fraction of molecules that have the kinetic energy in the energy range e d and d plus delta

d dE.

(Refer Slide Time: 26:55)

So, if you look into the graph if you this is the velocity distribution, this is the energy

distribution which we have got. You just see the function this is here you have the energy

this is this is the distribution function in energy. So, notice the distinct difference. If you

look into the previous distribution you will see how the distribution is looking like. If

you have a tangent drawn along the curve, what will you see; notice the different shape



of the two curves. The energy distribution has a more vertical  tangent this is a much

more steeper than the velocity distribution.

The  vertical  tangent  at  the  origin  and thus  it  is  rises  much  quicker.  So,  the  energy

distribution function rises very at a very higher rate as you v at the near the origin when

that you have a vertical line instant which is otherwise for a velocity distribution it is a

much more horizontal. It will it will be looking something like this the curve is like this.

So, that this is the shape of the curve is not the same.

(Refer Slide Time: 28:10)

And, another one after passing through the maximum point suppose you are looking into

this one you just see that you have this expression and this is the maximum peak which

we have and when you are passing through the maximum the energy distribution falls

more  gently  than  the  velocity  distribution.  See  the  distribution  is  broader  at  higher

temperature you have three temperatures which we have the temperature as in velocity

distribution. The temperature that curve is high much broader at higher temperature a

greater proportion of the molecules will higher and have higher energy.

As before the area under the curve are different as temperatures must be the same. So,

you  can  see  how  the  energy  distribution  function  falls  the  broadness  at  higher

temperature than at higher proportion of the molecules having higher energies and the

mostly the shape of the curve is different from that of the velocity distribution.



Thank you so much.


