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Welcome to the course on Molecules in Motion. Last time, we had talked about the rms

speeds of molecules.  Today we are going to be continuing with the kinetic theory of

gases.

(Refer Slide Time: 00:37)

But, we are going to look into certain new parameters which is like when we talk about

particular kinetic assumptions of the kinetic theory model we have discussed that we

have taken assume that the molecules are in continuous motion.

So, this is this is the postulate we had. It is the assumption which we had. So, all these

particles have some velocity, but do they the all particles have the same velocity? It is a

question which we usually ask that when you are talking about velocity of the molecule

they are they undergoing elastic collision and all the molecules or particles in the gas

having the same energy. The answer is no. Suppose, you have a gas, suppose you have a

gas or air in a container we know that the temperature of the gas will be what whatever

we put in a thermometer and we look into the thermometer temperature and say a sign

that this is the temperature of the gas.



And, that means, since temperature is proportional to the speed of the molecules which

we can assume that the molecules are all supposed to have the same speed, but that is

not. So, this is not. So, the molecules of the gas can have huge possibility huge large

possibilities  of  speed.  So,  there  is  a  distribution  of  speed  which  is  existing  and the

particles which are moving they are moving randomly with different speed. Some can

have very large speed. Some will have very small speed. Overall whatever you are seeing

is the corresponding to the temperature of the gas, but individual molecules are having a

different speed and contributing giving rise to a distribution of function distribution of

possibilities of the values of the speed, ok.

(Refer Slide Time: 02:38)

So, this being the condition we move into understanding how if we take as we have

discussed previously, the molecules in the of the gas molecules which we are looking

into they are all having velocities and these velocities are vector quantities and if we take

a snapshot of suppose a container where we have n number of gas molecules, this will

look something like this. You see these points are actually the vector heads of each of the

components which we have in the x, y, z, ok.

So, you can see that the number of molecules which you are having there is a distribution

of the vector heads which is the points which we are seeing in the vector space, this is the

vector space velocity vector space. So, in here what we are seeing that few molecules are

of having very high speed and these are coordinates which is going to be representing a



very high speed and some are having very low speed. So, there is a distribution and this

distribution is symmetric when the distribution is symmetric we call this as the isotropic

distribution;  that  means,  this  there  is  a  same type  of  distribution  in  the  x,  y  and z

direction, ok.

So, whatever we are talking about here, we are talking about the speed of the molecules,

we are generally talking about the rms speed which is associated with the vectors.

(Refer Slide Time: 04:10)

So, now what we look this distribution of a speed it is in; what particular manner will

these  particles  be  distributing  having  the  different  values  of  speed.  As  you  can

understand this is a random variable, a continuous random variable. Continuous random

variable as you know if you have a studied probability and statistics is that a continuous

function  random  function  means  random  function  can  be  either  discrete  or  can  be

continuous.

Discrete functions are which have a definite value like you toss a a dice, toss a coin these

are all  having a  limited  possibilities  of what  the outcome may be,  but when we are

talking about a continuous distribution or the continuous function. That means, we have

a large distribution of values which can be possibly assigned to that particular function.

Suppose, we talk about the population of a country or per capita income of a particular

um population of a our country what happens we talk the system which is the dynamic

system is the country we are looking into. And this if you see the possibilities of the



income which we have we can have a average income value assigned to a particular

thing. But, when you look into the distribution you will see some are having a very high

income some are very having very many schooling income someone even going with

zeros income.

So, these are all a live examples of having a random function which is continuous and

this continuous function was very beautifully explained by two scientists Maxwell and

Boltzmann; James Clerk Maxwell and Ludwig Boltzmann.

Boltzmann  these  people  renowned  scientist  and  their  contribution  to  the  field  of

probability particularly Boltzmann’s contribution to the field of probability is very high.

It  was there  these two scientists  independently  started with the distribution  function.

Maxwell  gave  a  distribution  pattern  a  function  along  or  formulated  a  distribution

function to explain the how the molecules are distributed for a ideal gas. And this was

modified by Boltzmann and this  distribution hence we call  it  as Maxwell-Boltzmann

distribution.

This distribution can be or in terms of the speed of the molecule all since speed is related

to the temperature we can and a temperature is related obviously, the thermal energy is

kT. So, we can always say that energy of system can be really having or will also have a

distribution.
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In  fact,  Boltzmann  began  with  whatever  things  he  proposed  was  based  on  energy

calculations that was the time when we have this quantum mechanics coming in and the

Newton classical mechanics was giving way to that quantum mechanics. And you see

Maxwell was a mathematician, he was a Scottish and in around 19 in 1800 he was he had

made contributions.

His main contributions was the electricity and magnetism and their interrelationships and

he gave the distribution of speed he was a physicist and he gave a distribution of speed

which was later on modified by the Australian Austrian physicist which who was born in

Vienna he was he is he is a father of the probability theory which we have for a gas

molecule system. So, what he applied was the how the energy is going to be distributed

in a in the particular he described or formulated the distribution pattern of energy of a for

a particular dynamic system.

What he looked into was if I if you have say if you have a energy of a particular system

the  energy  of  the  system he  said  the  energy  of  the  system was  proportional  to  the

probability of the energy of a molecule having a energy was proportional to e to the

power x epsilon or e e to the power E by kT, this is the kT is the Boltzmann constant

which he formulated.  He said that  the energy of that  system was proportional  to the

exponential per term which he gave he said is arising from what do you call the product

law of probability, ok.

So, if you have two systems if we if we have two systems with energy E 1 and say E 2

the energy of the system will be given as e to the power of a one system by kT into of the

second system. So, the energies were summed up like something like this.

So, what you have and he is said if I have n number of if I have a i system the molecules

of a i system then the distribution function can be given as e to the power divided by the

summation of all the energies which the system i can have. This was the basis of the

probability  distribution  which  he  called  the  energy  probability  distribution,  the  prob

distribution for energy, ok. So, this is what he said this is e to the powers if you can read

this e to the power e for the i-th system divided by kT summed over all the i's. So, what

he  did  this  summation  he  called  he  normalized  this  and  this  we called  as  p;  this  p

normalized to 1.



So, this is how the Boltzmann distribution and energy looks like we are going to look

into something else today and what is how is the distribution function going to be given

is for a for a particular gas molecules are is what we are going to look into.
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Suppose, we have at any instant a velocity vector represented by a point as I have shown

you in the diagram whether you have a having a distribution of particles in a container a

spherical container or a cubic container where the end of the vector was represented by a

dot, ok. So, the probability of finding a molecule with us suppose they are moving in the

x direction then the probability of finding the molecule in the direction in the range x v x

plus v delta v x in the direction x is given by something like this. You integrate it over

minus infinity to plus infinity.

The possibilities of extending from one infinity to another infinity in the x axis the x

direction, and what is dv here? Dy dv here is the infinitesimal velocity unit in that x

direction, ok, a small very small velocity unit which we are looking in the x direction.

And, what is this? This phi of f x this is a function of velocity in the x component of

velocity and this we call as the probability density along the x axis or x direction.

And, the product which we are getting the product of the function into the velocity unit

in the x direction dv x is the probability that a particular particle has a velocity in the

range this v x and v x plus the in infinitesimally small velocity unit dv, am I clear? What

I am looking into what I what Maxwell’s-Boltzmann distribution gives us in the crunch



is it is it is gives you a range in which you find the velocity, ok. The probability that the

particular particle is good to have a velocity in this particular range in x direction is what

you get, and the velocity unit which you are looking in that in the velocity space is the dv

x.
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So, let us look at how it is this, how this is going to look? In a vector space if this is the

vector space I do not know whether you can see it, here you have the y axis this is the x

axis, is a z axis, this is a x axis. So, what we have? initially we had this point position of

the  particle  and  this  position  of  the  particle  could  be  represented  by  the  x,  y,  z

coordinates into the i, j and k now we differentiate those point spatial coordinates with

respect to time to get the velocity.

So, initially we had the r which was represented r as x into I plus y into j plus x z into k.

Now,  we  differentiated  that  that  was  in  spatial  coordinates  and  this  is  a  velocity

coordinate. So, we are generating a new coordinate system, where we are looking into

the differentiation of the with positions of the particle with time to get the velocity values

and this velocity is as you know is a vector quantity is going to be v is in the other i-th

from the a v x component into i z into the v z component plus k into v z component.

So, this is the velocity um a resultant velocity which we are going to get because it is a

vector quantity, we have three components we have components of velocity which can

be determined as you can see that the figure is showing the velocity vector and in the



vector space and the length of the velocity vector is v and that represents the magnitude

of  that  represents  the  speed and the direction  of  the  particles  is  calculated  from the

components of the v x, v y and v z through the Pythagoras theorem.

This is what we had done previously the rms speed, we call this as the rms speed which

is represented as v or sometimes as c calculated from the components of the velocity

vector by using the Pythagoras theorem and sometimes it is also called as the absolute

values value of the velocity. And, so, this v which we are looking into is nothing, but the

square  of  the  velocity  component  in  this  x  direction,  velocity  component  in  the  y

direction and the velocity component in the z direction, squaring it up and taking a under

root.

So, we use the Pythagoras theorem to find out the root mean square velocity which we

have discussed in the previous classes.

(Refer Slide Time: 17:07)

So,  what  we have we had we talked about  in  the how what  will  be the probability

distribution or what will be the probability function in the x direction. Similarly, we can

find the probability of finding a molecule within the velocity range of v s y and v y plus

v z. This is the unit which we are adding. This is the velocity um infinitely small velocity

unit in the z y direction.



Similarly,  you  can  write  that  further  and  how  do  you  represent  that?  Since  the

probabilities are going to be same in all the three directions so, I take it from minus

infinity to a positive infinity and this is the function which is going to be similar to what

we had in  the  x  direction.  Similarly, you have  this  for  the  probabilities  along the  z

direction where you have the velocity range limited to v z and v z plus the infinitely

small a velocity unit which is v dv z, ok.

So, as you can see what are the each of the components are representing I hope you

understand what I am trying to say that the velocities are distributed all throughout and

this velocity distribution; since velocity is a vector quantity we are representing that in

terms of the each point as a vector in the head of the vector, velocity vector as one point

and we are looking into the range in which the probability of finding the molecules are.

What is the range? In the x direction, in the y direction and the z direction is the unit is in

the range in which the speed is going to be existing and each of the component plus that

speed plus the infinite in infinitely infinitesimally small velocity units, ok. So, this is the

range in which we are looking into in the probability distribution.

So, what these are the v function into v why we z represents the probability density in the

y and z direction and when you have this product of the velocity function with the unit

velocity unit then you get the representation of the probability that a pop probability that

a particle has a velocity in the range which we have specified in a y axis and along the z

axis.
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So, if you look at this you can imagine a small unit with a velocity vector represented,

this is the head of the velocity which we are looking into this is the small unit which we

are looking into which is having x, y, z and dv are the velocity units in this particular z, x

and z direction. This is y this is x and this is z direction this is the volume element we are

looking into and this is represented by the vector head which we are looking into.

So, in this case the three velocity if I have to look into all the three possibilities and then

what we can represent the velocities since these are random variables and you have the

laws of product of probabilities product law of probabilities then since all of these are

equally probable in all the three directions and they are independent of each other; that

means, one if the event is what whatever event we are talking about is independent of the

others.

So, we can say that if I have this probability represented by this then it is actually the

function product of the probabilities in the y axis along this is y z x axis, y axis and z axis

that will be represented by from now as a unit which is representation of the resultant

velocity vector v, ok. So, this volume element is the velocities is in the velocity space of

in infinitesimal in size and the density of the points in this end is the specific vector head

which we are looking into, ok.
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So, if I want to see in what whatever I just now said can be represented as something like

this. The distribution in all the three dimensions is actually the product of the probability

functions which we have taken. So, we simplify that and since this is a a probability and

it is a product of the probabilities. So, I represent this by v x v function of v v a function

of v in where v is the rms speed which we are looking and this  is  the unit  velocity

element which we are putting or representing the particle.

(Refer Slide Time: 22:29)



So, where dv x, dv y, dv z represents the volume element which we just now saw this is

the volume element which we are looking into. So, and this is how we are going to look

into  the  whole  picture  and where  this  is  the  velocity  and this  is  represented  by  the

velocity head. So, this product of the velocities can be given something like this which

you can represent this like this and then you come to this form, right. This is the after the

product what you look into is this, the function of v which is the rms speed, ok.

(Refer Slide Time: 23:08)

So, now we look into the if  I  want to look into the Maxwell’s distribution of speed

suppose the energy of a molecule which is having a mass m moving in the x direction

with a a velocity v x we know the we are looking into just we are going to just look into

one dimension and then we can look into the all the three direction when we take the

component. First let us see in the one the dimension.

So, in one dimension if I look then I can only write one component of the velocity that is

the v x. So, v x if according to the Boltzmann distribution which I have just now written

down it is going to be if this is the energy term I said it is going to be energy divided by

the kT and if this is the energy associated with one molecule then the f of v x will be

some constant into e to the power the energy divided by kT and what is the energy is the

half mv square and where m x is the direction we are looking. So, we have to looking

into the v the v x component of a velocity.



So, this constant which we have this is the equation which is following the Maxwell’s-

Boltzmann  energy  distribution,  right.  This  is  the  probability  distribution  and  then

probability density of the molecules in the v z, v x direction which we have represented

by the v x of f of v x into some constant into the function which we had talk talked about

in just a few minutes ago this is the energy term which we are looking into, ok. I said that

it is a exponential term exponential in terms of energy by kT and the energy which we

are looking into is  the kinetic  energy which is half  mv square which where x is  the

component  v  x component  we are  looking into,  since  we are looking into  only one

direction.

Now, what we have to do we have to find out the distribution how to then get the value

of the integration we. First let us find out what the c is we do not have the full function of

the probability density. This is the probability density the full function is not possible to

understand until we know what the value of c is.

Now, how to find out the value of c? What we know that if I have to integrate  this

function this is this is the velocity this is the probability density into that if I multiply that

of the um the say the wall in the element which is the velocity element along the v z axis

it is dv x. So, I multiply that into this is the density function. So, this is the distribution

function we get of a once we multiply the probability  into the distance velocity  unit

which we are looking not distance, sorry it is the velocity space we are looking into.

So, this is the velocity element through which we are going to have a the probability

density multiplied and which will be extending to minus infinity to plus infinity and this

should be normalized to get value of 1. If this is normalized to get the value of all the

probability functions that need to be or normalized to and when we say normalized; that

means, the product of the probability density into that of the velocity element should be

equal to 1, when if we are talking about in the x direction extending minus infinity to

plus infinity.

So, on integration of this we can find out the distribution and the distribution will look

something like this you just have a look m by 2 pi kT raised to the power half and this is

the energy term which we are already having. So, how did we evaluate this? How did we

get this distribution function?
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If you go through the books you will see this is the function which we have, right. Now,

a this is a in a definite integral occurring which is for a kinetic theory of gases you have

handbook values which you can get for the various functions of a various integral values

in a definite integral values extending for various values of n.

So, if you look into this you will see that if I compare this expression of mine with that

of a integration here then I can see that the x square term is there, the x square some x is

the variable here, here v x is the variable this is matching, but I do not have anything in

front of it. So, this will be n equal to 0. If I put n equal to 0, this becomes 1, then my

equation is resembling that of the definite integral condition.

So, if n is equal to 1, what will be the result this is the result if you put n equal to 1. So, if

you put n equal to 1, in the definite integral then this reduces to something similar to

what we have here, right. This is the function which we have. So, this is the function

which is integrated over minus infinity to plus infinity. So, I have a function which is e to

the power minus v x square by 2 kT. Now, what are the parameters which is a variable

which is a v x is the variable. So, other parameters like n by 2 kT is the constant.

So, if I look into this expression then here I have a into x. So, the a must be having some

value. What is the value of a here? The a value is nothing, but m by 2 kT, right. Now,

look at  the  x expression of  the  solution  of  the  integral  definite  integral  from minus

infinity to plus infinity when e to the power x square is there dx. So, this is a in x terms



our variable is obviously, v x. So, if I have this a definite integral similar to what I have

here I should be writing dx and integral of this, ok.

This is supposed to be integrated over minus infinity to plus infinity and there should be

a dv x term here, ok. So, if I compare this with this one, now you see this is the value I

should get for n equal to 0 because I do not have any component in terms of x. So, if I do

that I can get a I am C the constant is equal to pi by a to the power minus a half. How?

Because, this is equal to 1; so I will take the entire thing into right hand side and find out

the value a left hand side and find out the value of C.

So, this if I go take it to other side will become minus half and if I substitute the value of

a here, then I get a expression like this. Now, I substitute this value of c in this expression

and I get the final value of the Maxwell’s Boltzmann distribution, clear?
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So, what we have here we can see that the Boltzmann distribution and speed is the this

probability density it has the form of the Gaussian error it is going to be symmetric occur

across the point zero and it is extending to minus infinity to plus infinity along the x axis.

The most probable velocity in the direction is zero, you see most probable is supposed to

be the peak it is going to be zero because of the form of the equation and this can be

shown by integrating the velocity along x axis into the probability of over all  values

along the v x. So, this is the velocity which we have this is the velocity component into a



probability of all over the overall the values of x this is what we have is this function into

the v x; v x is what; the velocity component in the x direction.

If we integrate this over minus infinity to plus infinity and equate it to zero, then what

you get is we can evaluate and function find out what is the in the probability density and

since it is symmetric which is a as obvious from the graph it is going to be a symmetric

form and it is a odd function, and if I if you see in this plot if you raise the temperature or

the mass of the particle what happens do you have this expression, you have raised the

temperature or the mass what happens the distribute becomes more broad. And the area

under the come curve always becomes v becomes v of a function of v v is a vx in the

normalized form.

So,  all  the  particles  which  you  have  talking  about,  suppose  these  are  of  various

temperatures they are these are representing various and that distribution plot for various

temperatures, so, if I have a distribution plot for various temperatures in integrated from

minus infinity to plus infinity what I get the shape of the curve changes because it is

normalized. The total area of the curve under the curve should be constant because that is

going to be representing that a total number of molecules. Total number of molecules are

not changing only their speeds are changing.

The speeds because the speeds are changing because of the change in temperature you

have a different type of a distribution the total area though will remain the same because

it is normalized to 1. The probability will be always equal to 1. So, if you are looking

into this that all  the values which we are having is going to be within this area,  but

depending  on  the  temperature  or  when  we  increase  the  temperature  what  happens,

increase the temperature or decrease the mass of the a gas particles which we are looking

into, then the distribution becomes more broader, the height will be reduced and it will

become more broader. When you are decreasing the temperature, what happens; then this

becomes more steeper and the area under the curve remains the same.

So, you can understand if you have the same area of the under the integration, the area

will be changing if we are having a number of particles which are having a higher speed,

if you are increasing the temperature this is the velocity axis. So, if you are increasing

the temperature this curve will be having a tail extended and become broader because

number of particles having higher velocity will be increasing. But, if you are having a



lower temperature then what you have you have a temperature which is a value which is

relatively lower in the velocity, but most of them will be in a in x under this curve, all of

them will be under this curve, ok.
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So, I think today we can we cannot go beyond this. So, we will talk about the other

components and energy distribution in the next class.


