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Welcome to another lecture on Molecules in Motion.
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What we were talking about in the last class was discussing the various equation which

we had derived for a particle moving in a medium. We said that these particles which we

have derived the expressions  for  can be moving in  a  electric  field or  it  can be non

charged particles without a electric field.

So,  what  we were  essentially  trying  to  establish  is  we had talked  about  motions  of

particle through the kinetic theory of gases. What we had derived through the kinetic

theory? We were trying to extrapolate for the system which were charged and eventually

we established relationships which were applicable for charged molecules and ions or

whatever; 2 neutral ones when there was no application of electric field.

So, the equations which we had derived considering the particles to be charged and we

were trying to establish a relationship with that of non charged particles were essentially

3  the  Einstein’s  relationship,  where  we  were  trying  to  establish  a  link  between  the



diffusion coefficient D and the ionic mobility. If it is not a ionic particle or a charged

particle then we talked about the mobility as such. 

Similarly, we further modified the Einstein relationship and we got the Stokes-Einstein

relationship to have a link between the diffusion coefficient D and the viscosity of the

medium. And finally, we had talked about the Nernst-Einstein equation; a relationship is

between the diffusion coefficient and the ionic conductivities lambda where these are the

particles which were supposed to be charged and if they are not charged; we do not need

to  separate  them out  into  the  positive  and negative  ions,  we overlooked  the  charge

associated with it.

So, let us recapitulate what each of the term is representing in each of the equation. In the

Einstein relationship the D, capital D is the diffusion coefficient of the ions or particles if

they are not charged, u is the mobility of the ions if they are charged and if they are not

charged they are just the velocity of the particles. If they are not charged then we do not

have this  z the charge of the ion which is associated and F is obviously the faraday

constant.

Then k here is the Boltzmann constant, kappa naught is the viscosity of the medium, a is

the radius of the ion or particle in that particular medium. And here this was the Stokes-

Einstein  relationship  and then  we had the  conductivity  of  the  electrolyte  which  was

summation of the various charge numbers; that is the stoichiometric coefficient or the

numbers  of  formula  units  of  a  particular  charged  cation  or  anion  of  a  particularly

electrolyte into the charge square of that ion into the diffusion coefficient of each of the

ions.

Similarly, for the anion part this is the number of formula units of the anion which is

generated from the electrolyte. This is the charge of the anion, and this is the diffusion

coefficient of the anion F here is the Faraday constant, R is the gas constant, T is the

temperature in Kelvin.
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So,  these  relationships  we  have  established  which  can  be  more  or  less  established

through a experimentation through measurement of conductivity. 

We will talk about the conductivity measurement towards the last of the lectures; what

we have to recapitulate is the violins rule which we had discussed in lecture 26 in quite

detail. The empirical observation was that the coefficient of viscosity eta into the molar

conductivity of the electrolyte if they are the product of this is approximately a constant

for the same ion indifferent solvent.

We have seen that discussed also various exceptions to this, but more or less we can

assume the same ion and at different solvent, the product of the viscosity coefficient and

the molar conductivity should be approximately a constant. So, this is what we had taken

in the previous lectures; now let us justify as to how do we get this. From the Nernst-

Einstein equation if you remember the Nernst-Einstein equation what we had? We had a

relationship  between  the  conductivity  of  the  electrolyte  and  the  diffusion  coefficient

right?

So, here we see the conductivity of the electrolyte is directly proportional to the diffusion

coefficient.  So,  according  to  that  this  relationship  gives  us  the  fact  that  the  molar

conductivity is directly proportional to the diffusion coefficient of the particles in the

medium.  Then again from the Stokes-Einstein relationship what we had? This is  the

Stokes-Einstein relationship, we be from here we had the diffusion coefficients of the



particle  in  the  medium was inversely  proportional  to  the  viscosity  coefficient  of  the

solvent ok.

So, here we have the diffusion coefficient is inversely proportional to the eta naught the

viscosity  coefficient  of  the  medium.  From here  we have  the  conductivity  is  directly

molar conductivity of the electrolyte is directly proportional to the diffusion coefficient.

So, what we have? We have D in both the terms we have D in both the terms; if this is

proportional to D and D is proportional to 1 by eta; then what can we say? We can say

that  lambda  that  is  that  molar  conductivity  of  the  electrolyte  should  be  inversely

proportional to the eta the coefficient of viscosity or in other words we can say this is the

relationship we have written. Or we other words we can say if we multiply eta with the

molar conductivity, then it should be a constant this is what is implied in the Walden’s

rule

So, Walden’s rule we had taken previously what we have established now; is from the

relations  of  relationship  which  we  have  established  previously  the  Nernst-Einstein

relationship from where we had the molar conductivity was directly proportional to the

diffusion  coefficient  of  that  particle  in  that  medium.  Again  from  Stokes-Einstein

relationship; we had the diffusion coefficient of the particle inversely proportional to the

viscosity of the solvent medium. 

So,  from these  2  relationship  we conclude  through  further  from this  proportionality

chain; we further confirm that lambda that is the molar conductivity of the particle of the

electrolyte will be inversely proportional to the viscosity of the solvent medium. We can

write we eta naught to make it more clear because we are meaning the viscosity of the

solvent medium. So, eta naught you can put eta naught here it you can put eta naught

here.  So,  the  eta  naught  into  the  molar  conductivity  of  the  electrolyte  should  be  a

constant; if there is no exceptions associated.

And this implies that what we have talked about previously we are verifying that by the

Walden’s by the equations; we have derived and that is what we know as the Walden’s

rule. The usefulness of the Walden’s rule; however, gets complicated or it is lost due to

the solvation effect. Because you see in both the relationships which you are having you

have a hydrodynamic radius associated and the viscosity coefficient which is associated.



So, if you have the hydrodynamic radius; that means, the radius of the ion when they are

in a particular solvent medium will change when you are changing the solvent. Because a

degree 2 or that extent to which the ions get solvated in different mediums are different.

This also we had taken up in the previous lecture 26, 27; how if we are having a water

system or if we are having a non aqueous system how the eta the hydrodynamic radiuses

are changed because of the extent of salvation.

We had talked about  HCL being a  very good very strong acid when taken in  water

medium aqueous medium and how it was does not behave as a very strong acid when

taken in ethyl alcohol. So, this is the reason why we have exceptions to this Walden’s

rule because of the extent of solvation of the ions in the various solvent systems. And

that is the animal you see and hence the Walden’s rule at times; it does not give you a

constant because the viscosity of the solvents will change with different medium.

So, one factor contributing to the discrepancy of this being a constant is because of the

viscosity of solvent changes with different solvent system. And the radius of the ions

which we are taking a as the hydrodynamic radius which we had taken a is here you see

the diffusion coefficient to the Stokes law we have a here.

So, if we have a different we will  have different we have a different because of the

different extent of the solvated radius in different mediums ok. So, this confirms or this

validates the or discrepancies of Walden’s rule and how do we can relate an validate

through a Einstein’s relationship.  So,  this  is  what  we have  revisited  in  terms  of  the

Einstein Nernst-Einstein relation and Stokes-Einstein relationship.
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Now, I would like to talk about few fundamental questions which may be asked when we

are talking about these 3 fundamental equations of diffusion coefficient; this is the Fick’s

first law; this is the diffusion coefficient which we calculated through the Stokes-Einstein

relationship and this is also the Stokes-Einstein relationship where F has been replaced

ok.

If I have these 3 expressions what the question is what is the approximation made or

what is the limits under which we derive these following expressions. So, let us look at

the various approximations we have taken while deriving these expressions.

First  one is the Fick’s first  law of diffusion,  Fick’s first law of diffusion in any one

direction or in one dimension written in terms of the concentration. If this equation we

had if you remember this concentration term was initially a activity term which we took

as concentration applying to the conditions that the solution behaved ideally; that means,

it was a very very dilute solution under which condition the solution could be taken as

behaving an as ideal solution.

So,  the  concentration  terms  were  replaced  the  activity  terms  by  replaced  by  the

concentration terms in this equation. If you remember in a solution which is not uniform;

the activity was supposed to be depending on the position this is what we had derived

and the thermodynamic force which we had taken if I will not revisit that, but I will just

mention here please look up the lectures if you are having any doubt.



So, the thermodynamic force when we say the solution is non uniform is justified when

the activity of the particular species is depending on the position where it is. So, if that is

the position dependent that for then for a given temperature and pressure condition. Then

the thermodynamic force which is driving the movement of the motion of the particles in

the medium will be nothing but minus RT d ln a by dx ok; at constant temperature and

pressure.

And we had taken this approximation that we replace this activity in terms of the molar

concentration, for the conditions when the solution is very dilute. And if the solution is

very dilute we say that it is behaving ideally and we replace the activity in terms of the

concentration and activity coefficients to be 1. 

So, the activity could be replaced by concentration only when the activity coefficients 10

to 1 and under very dilute condition or ideal condition. So, this is the concentration terms

which we had written; if you remember we had written this how we had written this

equation, this was written in terms of the d 1 by d y into dy dx this is what we had

written by simplification.

So minus RT by c  into  the  gradient  in  concentration;  so,  this  was the driving  force

thermodynamic force involved. And the assumption which we had in the Fick’s first law

when we are replacing activities in terms of the concentration was the solution was very

dilute. So, the first assumption for this equation to be valid was the approximation then

the solutions behaved ideally; that means, the solutions were very very dilute.
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What happens to the next one this is the next one. So, in addition to the restrictions being

applicable to only dilute solution as for as the Fick’s law of diffusion in one dimension in

the concentration terms were taken in rather than the activities. In addition to that here

what  we have;  here we have a additional  approximation than the frictional  retarding

force. If you remember the frictional retarding force was proportional to the first power

of the speed of the particle;  this was the speed drift  speed and this was the constant

which was obtained from the Stokes law.

So, you see force is proportional to the first power of speed; what is usually force taken

to be? Force is equal to mass into acceleration it is not the first power of speed, but here

we have assumed the frictional force to be proportional to the first power of speed, ok.

This is the assumption which we have taken in for this expression. 

So, what we have? We have the expression in this the limitations or approximations we

have taken first is that it is the fields where the Fick’s first law is applicable only for very

dilute solution. So, we have taken that the solution is ideal first assumption so that we

can replace the activity terms in terms of the concentration.

Second one is the frictional retarding force moving on the particle on the acting on a

moving particle is proportional to the first power of speed of the particle instead of what

is the general relationship of force. So, this 2 are the conditions or approximations we

have taken in this relationship. What happens in the third expression?



Third expression is something similar this is the here we have written down what f is; the

f is as you can see here if you replace this. So, these 2 expressions are the same, but the

question which is asked is slightly different. So, here the frictional force is taken acting

on the particle retarding frictional force acting on the particle is taken to be the first

power of speed instead of as conventionally force as defined as mass into acceleration.
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Next one is the Stokes-Einstein relationship; what is the approximation which we have?

Apart from that the conditions  of first  law of diffusion a fixed first  law of diffusion

written, we have written in one dimension written in terms of the concentration in instead

of the activities assuming that the solution is i behaves ideally.

Second one the retarding force acting on the particle is proportional to the first power of

the speed of the particle. These are this is the assumption we have taken in spite of the

fact that force may not be; generally not proportional to the first power of speed. And the

last  restriction  which  is  associated  with  this  one  in  addition  to  the  above  2  is  the

assumption that the particles are spherical. 

See we are talking about the particle diameter; we are assuming the particles are hard

spheres and they have a definite diameter or the definite size. So, in this expression what

we have? We have put up the 3 assumption for each of them you can now identify this is

only for movement of gradient of movement of particle against concentration gradient;

where we have replaced the concentration term in terms of the instead of the activities



assuming the solution is behaving ideally. Here we have taken apart  from taking the

solution  to  be  behaving  ideally  where  we  are  replacing  the  activity  terms  with  the

concentration  terms.  We have  also  introduced  that  the  retarding  force  acting  on  the

particles is proportional to the first power of speed.

In the third one what we have taken in addition to the solution being applicable to only

dilute solution; where the Fick’s law of diffusion in one dimension where the terms of

activities have been replaced by concentration. In addition to the fact that the frictional

force or retarding force acting on the particle is proportional to the first power of speed

what we have additionally put in is the assumption that the particles are spherical.

If the particles are spherical only then we apply a; the radius of the particle is the ah of

the particle which is having of a different definite spherical shape right. So, these are the

3  equations  and  the  assumptions  associated  with  them  I  hope  you  understand  and

recollect when you write them.
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Now, we move on to the discussion further; after the first law of diffusion where particles

move  through  a  medium  due  to  concentration  gradient.  We now  discuss  the  time

dependent diffusion processes; that means, you understand what do you mean by time

dependent processes diffusion processes; we are talking about movement of particles in a

fluid medium, in a liquid medium.



So, what happens is what we what is of interest is to see how the inhomogeneities of the

particles  in  the  medium  spread  with  time?  So,  you  have  a  you  if  you  see  certain

processes like when you are adding a colored liquid into a solution how fast and how

quickly they mix and how they diffuse through the medium you can do that experiment

or you have done that experiment in from your childhood you can you understand; how

this liquid spreads the particle spreads through the medium.

So, how we are what we are interested in this part of the discussion is we are trying to

put in another diffusion equation which is slightly different from the Fick’s first law of

diffusion. Fick’s first law of diffusion is only movement of the particles considering the

concentration gradient. Now, what we are going to discuss is a time dependent processes;

how the diffusion process depends on time the how in inhomogeneities of particle in the

medium spreads or what do you say it propagates when we have change in time.

So, our aim here will be to obtain a equation, to write down an equation for the rate of

change of  concentration  of  particle  in  a  inhomogeneous  region ok.  So,  what  we are

writing? We our aim is to obtain another equation where differential equation where we

are going to relate the rate of change of concentration of a particle in a inhomogeneous

medium. So, what happens for example, in the concentration distribution in a solvent to

which solute is added ok. When you have a solvent the concentration distribution when

you are adding a solute to the medium what happens? The particles diffuse ok.

The focus is on the description of the diffusion of the particles; what sometimes we can

take physical examples. Suppose you have a rod or a bar of iron now you have a heat

source at one point. What you have you are heating the bar from one point if you keep

heating the bar what happens? And after some time then the bar gets heated up after

some time you withdraw this heat what happens? The bar is going to now reach a steady

temperature and the temperature will be uniform all throughout.

When you are heating the bar initially the initially the temperature of the point where you

are heating the bar is maximum and the particles the particles which are of high energy is

not yet reach to the other end. So, you will have a inhomogeneity in the temperature of

the bar. But as soon as you remove the heat source what happens? The temperature the

bar  gradually  tries  to  equilibrate  and you would have a  thermal  equilibrium and the

temperature reaches a steady condition and it will be same throughout.



So, similar to those arguments which applies to the diffusion of physical properties like

temperature. We are going to look into how the concentration distribution can occur in a

solvent medium when you are adding a solute.
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So, this is what we are going to be looking into today. And for the next class what we

have  sent  looking  into  is  a  central  equation  to  determine  the  rate  of  change  of

concentration of a particle in a inhomogeneous region given by diffusion equation this is

called as the Fick’s second law of diffusion. And the same Fick’s second law of diffusion

relates the change of concentration at a point to the spatial variation of the concentration

at that point. And we can write the equation as the change of concentration with time

equal to the means the rate of change of concentration rate means with time; the rate of

change of concentration at any point is equal to the spatial variation of concentration at

that point ok.

So, this is the spatial variation and this spatial variation in the double derivative; that

means, D square cc by dx square is what we are going to be looking into; this is known

as the Fick’s second law of diffusion, where the rate of change of concentration of a

particle  in  a  inhomogeneous  region  is  given  by  this  differential  equation.  And  this

differential equation is the diffusion equation and this diffusion equation is known as the

Fick’s second law of diffusion.



We will  now see how the diffusion equation follows from the Fick’s law of the first

Fick’s law of diffusion. So, here we have a say section in which we have we are looking

into how the particles are moving. The particles are supposed to be moving under the

Fick’s first; law from high concentration to low concentration. So, if this is my area of

interest, this is the window in which we are looking into having a area.

And the length of this unit if it is say x l and this distance which we are traveling is

initially was x and now this distance if it is l then this new point is going to be x plus l.

So, concentration at this point let us be c and what is the concentration at this point let

that be c prime. So, what we are going to be seeing, what is going to be the flux which is

going to pass through this and exit through this?

So, what we are looking actually is the window which is having a volume of A into l. So,

this is the area of interest we are looking into this area or this volume element how the

flux of particles are changing in this volume element A into l ok. So, this is going to be

guided by the diffusion coefficient; a diffusion equation and this is going to be following

the how we derived this using the first law of diffusion is what we are going to see in the

next class.

Thank you so much.


