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Welcome. Let us continue our discussion on the microstates of a system in equilibrium.

We have already  looked  at  how to  define  the  microstates  of  a  given  system,  if  the

solution to the Schrodinger wave equation to that system is known. And for this purpose,

we have already found how to calculate the number of microstates for N distinguishable

non-interacting particles.

(Refer Slide Time: 00:41)

In today is class I am going to focus mainly on spin half particles, and later on we will

also see what happens for the similar discussions on one dimensional simple harmonic

oscillator.

So, the basic idea that we have already introduced is this that first I am interested in the

definition  of the microstate  for  a  system in equilibrium,  and then I  am interested  in

calculating  the  number  of  such  microstates.  Why  I  am interested  in  the  number  of

microstates under a given equilibrium condition? I have not explained that question yet.



(Refer Slide Time: 01:31)

But, what we have done so far is- we have said that if the thermodynamic equilibrium of

a system is defined. In terms of the total  energy E, the total  volume V and the total

number of particles N, and if N is a very large number because the kind of values of N

that we are interested in are typically of the order of 10 to the power of 23; then we have

seen that the number of microstates for the same macro state is a very very large number.

This we have already seen.

So, in today is lecture what I will try to demonstrate to you is one step further in this

discussion, and the question that I ask is how does the number of microstates change for

different values of the total energy.
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So, in this in answering this question, it is found that it is convenient to talk in terms of

distributions. In your introductory courses in probability and statistics you know that if

you are carrying out an experiment and the outcome is not certain, and that there may be

many different outcomes possible, in that case the experimental results are described in

terms of a distribution function. For example, one main present the experimental result

using a plot like this, where along the x axis you are plotting the different possible values

of measurement of this quantity x. And here you are plotting the frequency or the number

of times this particular value of x appears.

So, in this case what I find is that x can take up values from say minus 4 to plus 12, but if

I make a very large number of measurements on this system, what is the value of x that I

will be getting in most of the times? I find that the number of times I get a value close to

0 and between maybe close to 0 is maximum. If I ask this question how many times shall

I get the value its equal to 10, as you see that this comes much less frequently compared

to the value x equal to 0. And therefore, the key points over here is that if you make a

measurement on the system, x the measurable quantity can take up many possible values

and the outcome of your experiment maybe any such value.

So, now if you perform this experiment a very large number of times, in that case you

got to start compiling the number of times each value has been recorded, and that gives

you  the  distribution  function.  So,  are  there  any  common  forms  of  the  distribution



function? Perhaps the most common one is what is known as the Gaussian distribution

which looks something like this.

(Refer Slide Time: 04:56)

It  is  symmetric  about  a  mean  value,  where  it  exhibits  a  maximum  and  then  it

symmetrically falls off at x deviates from this value x equal to mu.

So, my question is, is it possible to represent the number of microstates in terms of one

such distribution function, when I carry out a simple experiment like the measurement of

the total magnetic moment of a spin half system. So, this is what we are going to see

next.
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Now, please remind yourself that we are dealing for the sake of simplicity; a very simple

system where I have capital  N distinguishable non-interacting spin half particles,  and

correspondingly this is a typical representation of the microscopic state of the system

now why do I say that they are distinguishable? That is because each of them carry a

different label attached to it. So, how many such spins are present? Capital N such spins

are present I have only shown a few. Now where this particular spin depending on the

direction of the applied field can have an up spin, or in some other microstate it can have

a down spin where it is oriented anti parallel to the applied field.

Now, the  question  is  then  how  do  I  represent  the  microstate  of  a  system which  is

pictorially  represented here.  The microscopic  state  of the system is  as we have seen

defined in terms of the number of up spins and the number of down spins. So, let us say

we adopt this  notation that  small  n is  a number of up spins, and small  n prime is a

number of down spins.

So, in for such a representative microscopic state, the next question that we ask is let us

say that the probability of finding a given spin in the up orientation is p. So, that is

exactly what I have shown here. So, I am assigning a probability p of a single particle

having an up spin, and similarly I am assigning a probability q for that particle having a

down spin. Now till now I have not been talking about the probability of having this



single particle either in the up spin or in the down spin except that I have said, that there

are only two such possibilities allowed by quantum mechanics.

Now, what  I  find  here  is  if  I  introduce  these  two  conditions,  that  a  representative

microstate  must  have  n  up  spins  and  n  prime  down  spins,  and  the  corresponding

probabilities are p and q, then I must be having two conditions satisfied. First the number

of up spins plus the number of down spins must add up to the total number of particles n.

Similarly since there are only two options for a given spin, I must be having p plus q

equal  to  1.  So,  this  is  the  normalization  condition.  Now  you  must  be  wondering

regarding I always said that the number of microscopic states is a function of the total

energy total volume and that total number of particles.

(Refer Slide Time: 09:03)

And here I am representing gamma as a function of n. 

Now, the question is  does it  mean that gamma is no longer a function of E and N?

Actually in a previous class we have seen that under the given condition small n is equal

to capital N by 2 into 1 plus epsilon, and n prime is equal to capital N by 2 into 1minus

epsilon. Sorry this is 1 minus epsilon and this is 1 plus epsilon. So, what is epsilon?

Epsilon by definition is given by e the total energy divided by capital N mu h.

So, as you can see therefore, if I am representing the microstates in terms of either E,V or

N, it is equivalent to say that N is a function of epsilon and N and epsilon is a function of



E therefore, here n is a function of capital E and the total number of spins capital N and n

prime is similarly a function of E and N and I am implicitly keeping the volume constant

in which this system is present. 

Now once I understand this, then the question that we face is what will be the number of

microstates associated with the different values of small n that is the number of up spin.

You must realize that simply because I have capital N plus n prime equal to capital N

between n and n prime only small n can vary as an independent variable. The value of n

prime is always capital N minus small n.

(Refer Slide Time: 11:24)

Now with this background in mind, now let us have go and have a look at the kind of

distribution that we are talking about for a system like this. Now I asked the question

what is the probability of having a microscopic state that has kept small n up spins and

small n prime down spins. So, it would be given by a number like this.

So, particle 1 the probability of let us say that particle 1, particle 5, particle 7, etcetera

they have up spin and the other particles have down spin. So, if I have small n such sites

having up spins. So, let us say that I have a total of say capital N of these sites, some of

them are having up spins. This is 1, this is 1, this is maybe 1 this is another one and I also

have other sites being occupied by down spins. So, by the definition I know that; what is

the probability associated; with this site having an up spin that is p, how many such sites

are possible for this particular microstate that is n.



Now, the probability of having a down spin at any given site is q, and how many such q

terms are present that is n prime. And since these spins are non-interacting therefore, the

probability of whether a particular site has an up spin or a down spin does not depend on

what happens, what is happening to the other spins. Therefore,  probability associated

with having small n up spins and small n down in prime down spins, will be given by

small n such terms having probability p multiplied by small n prime such terms having

each having probability q. And therefore, this probability will turn out to be small p to

the power of n, into small q to the power of n prime.

Now once we know this, then the question that I have here is, I have now the probability

of having n up spins and n prime down spins for a given microscopic state, but how

many such distinct microscopic states are possible, that will be having small n up spins

and n prime down spins, this number can be very easily calculated and this is given by

capital N c small n. So, out of an assembly of capital N spins, you are going to choose

small n spins with up direction and the rest as a down direction and that is given by N

factorial divided by small n factorial and capital N minus small n factorial. So, this is

exactly what I have shown over here.
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Then for a system like this, I can very easily say that what is the probability of having

small n up spins in a system like this?



This is given in terms of this distribution function P n. As you see that p n has two parts;

this is the part that corresponds to the probability of a given microstate having small n up

spins and n prime down spins, where at each site small p is the probability of having an

up spin  and  small  q  is  the  probability  of  having  a  down spin.  And  this  part  is  the

contribution of having these many distinct microscopic states associated with small n and

capital and n prime.

Once we understand this, then I we can go back and we can say that well this is actually

a  specific  representation  of  a  binomial  distribution,  and  most  of  the  cases  we  are

interested in the special condition where small p is equal to small q equal to half, in that

case  the  binomial  distribution  takes  up  the  following  form,  where  you  have  this

coefficient and then you have half whole raised to the power of capital N. Now let us

have a look at the consequence of having this binomial distribution, and how we can use

these concepts in understanding the number of microscopic states. That are possible for a

given macro state and what would be the outcome of a measurement, that I make on a

system comprised of capital N distinguishable non-interacting spin half particles.

(Refer Slide Time: 16:51)

So, let us now have a look at how the binomial distribution looks like for a small number

of spin half particles. In this example we have taken capital N equal to 4 and we have

also fixed the individual probabilities of having up and down spins equal to half and

what does it mean it means? That I am now considering the 4 spin half particles in the



absence of any external applied field; as a result there is no similar preference for any

given orientation parallel or anti parallel to the field. And as a result of it now p is equal

to q and this value can only be equal to half.

Now let us have a look at how the binomial distribution for such a case would look like.

So, here what I have is, I have plotted small n the number of up spins along the x axis

and p n the probability of observing small n up spins along the y axis.

(Refer Slide Time: 18:11)

So, here in this example you have how many positions? You have 4 positions; in each

position you can have either up spin or down spin. So, what is gamma total? The gamma

total will be given by 2 to the power of 4 and that is 16. So, what is the probability of

observing one particular event? So, that probability p n will be given by the number of

times you have observed the n up spins divided by gamma total. It is very easy to show

that if you have n equal to 0 or 1 or 2 3 or 4 the correspondingly f n values are going to

be equal to 2 4 6 like that.

So, here what we are plotting is if I make a very large number of measurements on a

system like this, what is the probability that I will see small n equal to 3? So, I will I find

that that is given by 4 by 16. Similarly if I ask this question what is the probability that

small n is equal to 2? I will find that the probability is 6 by 16. So here therefore, the

major conclusions from this slide are as follows; in the absence of any magnetic field



there would be no preferential orientation. Therefore, the probability of a given spin half

particle in having up spin or a down spin will be the same and this value is equal to half.

And the probability associated with the value n is the same as the probability associated

with the value n prime, and I also see this very important characteristic that p n has a

maximum at small n equal to 2. Please note that under this condition where p is equal to

q this value where the maximum appears is actually capital  N by 2. We will see the

consequence of all these observations later, but now the question that I want to pose is

whenever you are studying a system of spin half particles what is it that you measure. We

measure the total magnetic moment, and when you measure the total magnetic moment,

so,  it  is  not small  n that  you talk about  rather  you talk  about  the value  of  the total

magnetic moment of the system.
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So, it is possible to show that a binomial distribution that is describing P of n can be very

easily used to describe the P of n that is a distribution of the magnetic moment. So, let us

see how this  can be done.  So, the total  magnetic  moment along the up direction  by

definition is given by the magnetic moment in the up direction, multiplied by the number

of  such  magnetic  moments  then  if  I  have  n  prime  magnetic  moments  pointing  anti

parallel or down, then the associated magnetic moment along the up direction is minus

mu. So, this  gives the contribution of all  the spin half  particles  that are aligned anti

parallel to the up direction.



Therefore, if I combine then it is possible for me to show that this capital M that is the

total magnetic moment along the up direction is given by sum numbers small m into mu.

So, what is mu? Mu is the intrinsic dipole moment associated intrinsic magnetic moment,

associated with each spin half particle. Now it is then possible to do a little bit of algebra,

and show that initially we were using small n.

And  now  I  am  going  to  use  small  m  as  my  independent  variable  in  my  binomial

distribution and I find that there is a for every value of small n that is a unique value of m

which  is  given  by  this  expression,  and that  follows  from the  definition  of  the  total

magnetic  moment  that  I  have  used  here.  So,  basically  then  I  understand  that  this

relationship  is  valid.  The  probability  distribution  associated  with  the  value  of  m  is

nothing, but the probability distribution associated with those values of n where small n

is equal to capital N plus small m divided by 2. 

So, now what will happen is, where do you expect. So, let us have a look at the resultant

binomial distribution. So, as you see along the x axis when I plot small n, the value start

from 0 and goes all the way up to 4, because I have capital N equal to 4. Now what are

the corresponding values of small m? 

The corresponding values of small m are given along this direction. As you see when

small n is equal to 4, it means that all the 4 spins are pointing up therefore, what is the

net magnetic moment of this system? That is equal to 4 into mu and I know that this is

equal to small m into mu therefore; it says that small m is equal to 4. Now if I consider

the case where this particular case, where I have small n is equal to 1. In this case I must

be having a typical macroscopic state as this is that so, no this will give you capital M.

That is equal to 2 up spins with mu, minus 2 down spins with mu that is equal to 0. And

therefore, I would say that this microscopic state is associated with capital M equal to 0

now therefore, small n is equal to 1 a small n is equal to 2 is associated with small m

equal to 0. And this way one can map the original p of n onto p prime of m and they

exhibit  the  same behaviour  whereas,  there  is  a  maximum and now the  maximum is

located at small m equal to 0 where the net magnetic moment vanishes.
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Now, in the next slide let us still have no applied field in the system, but we have a larger

number of spin half particles. And in this example we have taken the total number of

particles equal to 20, and as you see here because of capital N equal to 20 small n can

now vary  from 0  to  plus  20,  when small  n  is  equal  to  0  all  the  spins  are  pointing

downwards when small n equal to 20 then all the spins are pointing upward. And here the

conclusions are very similar to what we have got for capital N equal to 20. So, in the

absence of any applied magnetic field. Once again there is no preferential orientation P n

is equal to P n prime and P n has a maximum, once again at capital N as a maximum at

capital N divided by 2.

So, we will conclude this particular lecture by summarizing, we have shown that if there

is no external applied field, it is possible to associate a discrete distribution to the number

of microstates possible for each value of an observable. In this case the observable is the

magnetic moment of the system, and we have shown that how a binomial distribution

can be used to show the distribution of a small number of spin half particles, and where

each spin has only two possible orientations up state and down state.

Thank you.


