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Welcome. We will continue our discussion on the description of microstates of a system

in the today’s class. So, we are talking about how to define microstates of a system in

equilibrium,  when the  macro  state  has  been  defined  in  terms  of  the  thermodynamic

properties as we have seen before. And now we are going to talk about the microstates of

distinguishable, non-interacting particles. As you would understand that the solution of

the Schrodinger  equation  is  going to  be very difficult  if  we have a  large number of

interacting particles.
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So,  that  is  the  reason  why  at  the  starting  point,  we  have  chosen  to  talk  about

distinguishable non-interacting particles, for which for each of which the solution to the

Schrodinger equation is exactly known.

So, let us now go back and look at how to define the microstates for a system comprised

of capital N particles, and these particles are distinguishable and non-interacting. We will

talk  first  about  the  spin  half  particles,  for  which  we  have  seen  how  to  define  the

microscopic states when a single particle is present.
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So, in today’s lecture we will start by taking simple examples where we assign specific

values of N. So, this is the case where N is equal to 2, and as you can see that I have a

box in which I put 2 spins, their  colours are different so that we know that they are

distinguishable. And each spin can take up an up orientation or a down orientation with

respect to the direction of an applied field that is embedded in this system. And these 4

states  are the possible  microscopic  states allowed by the solution of the Schrodinger

equation for any such system.

So, this is my microstate number 1 this is my microstate number 2, this is my microstate

number 3 and this is my microstate number 4. So, the question that I would like to ask

here is if I have 2 particles like this and they are not interacting with each other, and each

particle can have 2 possible microstates, then what is the total number of microscopic

states here? Just because we will assume that particle 1 that is the spin half particle 1

shown in red is independent of the spin half particle shown in the colour green, for each

orientation  of  particle  1  I  will  have  2  orientations  of  particle  2;  now  how  many

orientations or microstates can the red particle have? 2.

So, the total number of microscopic states possible is 2 square which is 4, and these are

the 4 microscopic states as defined for this system. So, here I  am highlighting these

microscopic states by grouping them in 3 different boxes, and what do I mean by this?

This is what I mean when I say that if I look at only this microscopic state, each spin



contributes minus mu H through the energy of the system. Therefore, since both the spins

are aligned parallel to the direction of the field, the total energy of the system permitted

by the solution of the Schrodinger equation is minus 2 mu H.

Now, the question is, when this energy of the total system comprised of these 2 spins

how is minus 2 mu H then how many microscopic states are possible? As you see that

there is only one such microscopic state possible. Now consider the other extreme case

where I have the particle 1 having a down spin and particle 2 also having a down spin.

So, each spin contributes plus mu H to the overall energy of the system, correspondingly

the energy of the system is total energy of the system is plus 2 mu H, and there is only

one way in which this energy can be attained and therefore, gamma E the number of

microscopic states associated with this particular value of energy is equal to 1.

Now, consider the case where one spin is up and one spin is down therefore, while one

the up spin gives you a contribution of minus mu H to the overall energy, the down spin

gives you a plus mu H contribution to the overall  energy, as a result  the net energy

corresponding to this microscopic state is going to be equal to 0. Now if that happens we

can also argue that  there is  another  microscopic  state  that  can give the same energy

where particle 1 is having a down spin, and particle 2 is having an up spin. Therefore, if

we have a look at the microscopic states here even for this very simple system, where

each particle has a finite number. Only 2 energy states possible in that 2 states possible in

the microscopic level, in that case we find that different values of the total energy of the

system comprised of these 2 particles these are different.

With this energy I have only one microstate, with this energy I have this microstate, but

when the energy is equal to 0, I have a total of 2 microscopic states possible. Now if I

look at the next level of complication by introducing an additional particle in this system.
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So, we will be dealing with capital N equal to 3 and these are the possible microscopic

states that has been generated by assigning the up spin on the down spin state to particle

1, corresponding to each of which you can assign up spin and down spin to the particle 2

and corresponding to each of these combinations, you have 2 possible the orientations of

particle 3 that is up spin and down spin.

Correspondingly the total number of microscopic states here is now given by sorry this is

2 to the power of 3, you have 2 states for each particle and you have 3 particles. So, this

is 2 to the power of 3. So, there will be a total number of 8 microscopic states. And these

microscopic  states are  tabulated here,  this  is  the microscopic state  having the lowest

energy and this is the microscopic state having the highest energy. Now when we look at

and these microscopic states, and try to group them exactly the way we have done in the

last slide where I had N equal to 2 this is what I shall get.

I have a unique microscopic state, where you can see that you have 3 spins, all 3 of them

oriented parallel to the direction of the applied field, and correspondingly the energy of

the system is minus 3 mu H. And if you have 3 particles each of which can have either

up spin or down spin in that case that is only one way, in which this kind of situation can

be arrived at and therefore, the number of microscopic states associated with this energy

value is equal to 1.



Now let  us  consider  the next  set  where I  have 2 spins  up and one spin down. This

obviously, would give me an energy value that is minus mu H that is because there will

be cancelation of contribution from these 2 pair and only the positive only contribution

will be made by the unbalanced spin oriented parallel to the direction of the field. It is

possible to have 3 such micro states. And therefore, gamma corresponding to this mu

value is equal to 3. The next set corresponds to mu H equal the E is equal to plus mu H.

Now  E  equal  to  plus  mu  H  tells  you  that  now  the  microscopic  states  must  be

corresponding to 2 spins down and one spin up. So, that is exactly what is has been

shown in this set of microstates and once again you see that there are 3 such microstates

possible giving you the gamma value equal to 3.

And finally, when we talk about the highest possible microscopic states, what we find is

when all the 3 spins are oriented anti parallel to the direction of the applied field, then the

energy value turns out to be plus 3 mu H and there is only one such microstate, that will

correspond to this energy value. So, as we see that the variety of the problem is going on

increasing as we increase the number of particles.

So, the next question; obviously, that we can ask is if I have this general case of capital N

spin half particles, each of which are distinguishable and non-interacting with the other

spins present in the system. And the system is present under the condition that the total

number of spins is constant, and they are present in a constant volume then the question

that we pose is, is it possible to find out the total number of microscopic states associated

with the system specification.
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So, here this is a representative microscopic state as you can see here. So, this is the

direction of the applied field, this white region defines the total volume v that is available

to this spins for occupation and here a particle 1 is pointing up, particle 2 is pointing up,

but  particle  3  is  pointing  down.  And  the  other  spins  are  also  taking  up  respective

orientation.

So, this is one typical microscopic state depending on how all these spins are arranged up

or down, I would say that many such microstates are possible. So, how do I express or

how do I define one such microscopic state. I will define it in terms of 2 numbers and

what are these numbers? These numbers are as follows; first I will say that I have for any

even such microstate small n is a number of up spins. 

So, if I have these many spins, how many up spins do I have 1 2 3 4. So, small n would

be equal to 4 and n prime is equal to the number of down spins. So, in this picture I will

have n prime equal to 2. And therefore, if I have capital N equal to 6, for this microstate

it is completely described in terms of the small n equal to for up spins and small n prime

equal to 2 down spins. So, let us not really bother about what exactly the values of n n

prime are, but instead what we will see is there are 2 constraints on this system. If I hold

the total  number of particles  present  in the system constant,  if  they are present  in a

constant  volume  v, and  if  the  total  energy  of  the  system is  fixed,  then  there  are  2



equations that must be a satisfied by the numbers n and n prime. Does not matter which

microscopic state I am looking at I must have n plus n prime is equal to capital N.

So, whatever microscopic state I construct by varying I n and n prime these 2 numbers

must always add up to capital  N. And also I must know that the total  energy of the

system imposes certain restriction on the number n and n prime.
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And this is because I know that for one up spin, the energy contribution is minus mu H .

So, when I have small n such up spins, then what is the total contribution to the energy

minus n into mu H.

Similarly, if I have one down spin, then the contribution to the energy of the system is

plus mu H. So, if I have n prime such down spins, then the total  contribution to the

energy would be n plus n prime mu H. Now I have already mentioned that the total

energy of  the system is  constant.  So,  then I  must  be having E is  equal  to  whatever

contribution I have got from this small n the up spins that is minus n mu H. And then

whatever contribution I have got from this n prime down spins that is n prime mu H or I

can write that E is equal to minus mu H into n minus n prime or I can say that n minus n

prime is nothing but minus E by mu H.

Now, let me introduce this quantity which I have already done in yesterdays class, that

epsilon  is  equal  to  capital  E  divided  by  capital  N mu  H.  Therefore,  if  you  fix  the



macroscopic state of the system by specifying the value of E and value then the value of

capital N, and by the design of the system mu is also a given constant, H is also given

therefore, epsilon is also a function of E and capital N and therefore, I can very easily

write that n epsilon that is equal to E by mu H. Therefore, this equation turns out to be

small n minus n prime that is equal to minus n epsilon.

So, this is exactly what the relation that we have obtained by looking at the conservation

of the total  number of particles,  present in the system as well as this equation is the

consequence of the fact that the total  energy of the system is fixed.  Therefore,  I  the

question that we are asking here is what is the number of microstates that are possible

when you have fixed the total number of particles volume and the total energy of the

system that is what we are going to calculate next.
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Now, in this case please remember, that we have put in this definition that epsilon is

equal to the total energy E which is a given constant, then capital N mu H. So, in this

particular  case the  other  reminder  that  I  have for  you is  that  the  number of  distinct

microstates are formed by choosing these numbers small n and n prime, from a total of

capital N spins. So, smaller n of them we will have up spins. So, automatically n prime

that is capital N minus small n will have down spins. So, the question is the number of

micro distinct microstates is equal to the number of ways in which you can choose small

n  up  spins  from a  total  of  capital  N spins  and  therefore,  I  must  be  having  gamma



corresponding to such choice is capital N factorial divided by small n factorial by small n

prime factorial.

So, this is the number of ways in which you can choose from an assembly of capital N

spins, small n spins with up spin and the rest of the spins that that are n prime numbers

with down spin.
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While this is actually understandable, let us now have a look at what happens if I want to

express this small n and n prime in terms of the given constants capital N V and capital E

these 2 algebraic equations can be solved very easily. And you we will find that small n

is given by an expression like this. And n prime is given by an expression like this.

Therefore, previously we had expressed the number of microscopic states in terms of n

and n prime and here I find that n and n prime they are decided by the values of capital N

and epsilon and what does epsilon depend on? By the definition of epsilon I find that it

depends on the way we have defined the macro state of the system. And therefore, I

understand that the number of distinct microscopic states, here is going to be equal to

gamma n where small n is itself a function of E V and N.
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So, if I go back and then try and try to answer this question, that given the formats of

small n and n prime, what happens for realistic systems in realistic systems? I have a

very large value of capital N. Now what is small n and n prime? These add up to capital

N and therefore I must be having both n and in prime as very large numbers. Now what

is the consequence of having both small n and n prime as large numbers and this is as

follows.

As I see that there is an extremely useful mathematical tool that is known as stirlings

approximation,  which  allows  us  to  evaluate  factorial  of  a  number  in  terms  of  its

logarithm. So, if n is a very large number in that case natural logarithm of n factorial its

can be very easily approximated as m multiplied by the natural logarithm of m minus m.

So, as you see that  if  you use your calculator  and try to calculate  the factorial  of a

number,  this  number  becomes  increasingly  large.  So,  if  I  want  to  find  out  what  is

factorial 2?

Factorial 2 is 2 into 1 that is equal to 2, factorial 3 that is equal to 3 into 2 into 1 that is

equal to 6, this way if you use your calculator let us say what is factorial 6; 6 into 5 into

4 into factorial 3. So, what you have is 5 fours are 20. So, 120 multiplied by 6. So, that is

equal to 720. So, by going from this number 2 to 6, I can say that the value of the

factorial has increased from 2 to a large number 720 and if you use your calculator you



will  be able to see that you cannot find out the factorial  of a given number, beyond

certain integers. 

I will ask you to go back and check this using whatever calculator you use. So, basically

then whenever you are counting the number of microscopic states, it becomes a problem

when you are trying to estimate the number of microscopic states in terms of capital N

factorial and small n factorial and n prime factorial. Here capital N small n and n prime

all of them are very large numbers. Now if I can use the stirlings approximation in that

case as you see, all I will have to do is I will have to take a natural logarithm on both

sides and evaluate if I do that in that case what happens is I know that gamma is equal to

I know that gamma is equal to.
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Capital N factorial divided by small n factorial into capital N minus small n factorial. So,

what is l n gamma? L n gamma is equal to l n capital N factorial minus l n, small n

factorial then minus l n, capital N minus small n factorial. Now I am going to use the

stirling approximation. If I use the stirling approximation in that case what I find is the

first term turns out to be n l n n minus n, minus this term is small n l n n minus small n

and then this term turns out to be capital N minus n l n capital N minus n minus capital N

minus small n. 

Now you can do the algebra here very easily and we will be able to see that you can

write down l n gamma in terms of a very simple algebraic relationship involving capital



N and small n, but you do not know what small n is. Small n is given by capital N by 2 1

minus epsilon. Where epsilon is equal to capital E divided by capital N mu H and you

can put this expression of n back into this expression and what you get is a very nice

expressions giving us what l n gamma is in terms of capital N and epsilon. So, let us

have a look at this particular equation. So, what is it that we have achieved? We have

achieved the estimation of the number of microscopic states possible for a given system

with a constant value E V and N.

And this expression tells me how many microscopic states are possible if I the try to

represent the system in terms of a collection of up and down spins. Now when we do this

we are going to have a look at this particular mathematical expression and focus on what

it means.
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It means something very simple; although it looks a bit cumbersome and you might think

that what uses this, and also you see that there is some problem as far as a mathematical

property of this equation is concerned. This must be a very poor approximation for the

total number of microscopic states, in the case when epsilon is equal to plus minus 1. 

So, of course, this relationship is valid when epsilon has a value, which is other than plus

1 or minus 1. Now when I look at this expression for values of epsilon other than plus

minus 1, I understand that I can take capital N out and recast the rest of the terms as l n

of in lambda, where lambda is a number that is greater than 1. So, basically I can rewrite



the equation shown above as natural logarithm of gamma that is a number of microstates,

actually would go something like capital N the number of particles present in the system

multiplied by the natural logarithm of a number lambda, where lambda is greater than

one. So, what does it mean? It means that the number gamma I itself can be given by

lambda to the power of N where n is greater where lambda is greater than 1.

Now as you see that just because lambda is greater than 1, it brings us to a very very

important conclusion.
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And the conclusion is the number of microstates gamma is very very large for a system,

if a very large number of particles is present in the system and a constant value of energy

is available to it. So, and since we are in the real system, we are interested in typical

values of n which is of the order of the Avogadro number, you understand that whatever

we have said till now is actually valid and therefore, we would conclude here by saying

that we have considered a very simple case where each particle has only 2 microscopic

states either it is spin up or it is spin down. 

So, if I have a very large number of such particles, which do not interact with each other

and if they can carry a label distinguishing each of them from others, in that case we

have been able to calculate the number of microscopic states, that is possible if you fix

the total energy E volume V and the total number of particles. And we have been able to



show that under this given macroscopic state, a very very large number of microscopic

states is possible.

In the next lecture, we will take up the case of simple harmonic oscillators and show you

how such similar conclusions may be arrived at using the same considerations.

Thank you.


