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Welcome. In today is lecture we are going to look for a description of the microscopic

state of a system that we are interested in. So, the title of today’s lecture is Macro and

Micro States of a System in Equilibrium.

(Refer Slide Time: 00:34)

We have already seen this slide which basically summarizes the fundamental concept in

molecular thermodynamics. It says that if you were trying to understand the properties of

a system that is comprised typically of 10 to the power of 23 interacting particles. First

as, we have already seen that we will be we have already discussed how thermodynamics

can be used to understand the macroscopic properties of the system. And here, in today is

class we will be interested more in understanding the microscopic model of the systems

that we are interested in.

And as we have mentioned before, in general most of the systems are modelled in terms

of quantum mechanics. For example, if you are interested in molecular systems, in that

case you are going to use quantum mechanics without fail. But there are certain cases

where the description of classical mechanics to develop the macroscopic model, is also



found to be extremely useful. But in today is class what we are going to do is, we are

going to  concentrate  on developing  the  microscopic  model  of  a  system,  in  terms  of

quantum mechanics.  And in the third  part  of  this  course we will  see how statistical

mechanics connects these two extreme descriptions. 

So, let me just remind you of what we have learnt regarding the macro state of a system.

Or in other  words how to characterize  the equilibrium state  of a system that  can be

experimented on in the macroscopic scale. 

(Refer Slide Time: 02:42)

 So, we have already seen that if I have an isolated system, in that case I require only

three thermodynamic variables, entropy volume and number of particles to describe a

given equilibrium state of the system. And in those scales we found that that is a quantity

called thermodynamic potential which uses these three variables as natural variables, and

the  condition  of  equilibrium  is  determined  in  terms  of  minimization  of  the  internal

energy.

We have also seen if I couple the system with a thermostat and allow it to interact with

the reservoir in a certain way, then for example in this case you will use these three

variables, temperature volume and the number of particles to describe the equilibrium

property of the system. The corresponding thermodynamic potential  is the Helmholtz

free energy and the condition of equilibrium is given by equality of temperature between

the system, and the reservoir as well as the minimization of the Helmholtz free energy.



Now, with this idea of description of the macro state in mind, now we go and look for

how do I define the microscopic state of a system.

(Refer Slide Time: 04:01)

So, once again your system is the same, it may be a box full of gas or completely sealed

bottle of some liquid, it does not matter however complicated.

Your system may be what we are looking for is  the most  general  description of the

microscopic state of the system. So, a state that described the microscopic length scale

configuration as well as interactions. So, let us have a look at what quantum mechanics

tells  us  about  the  microstate  of  a  system  in  this  extreme  regime.  It  says  that  the

microstate of the system can be defined or may be described in terms of a wave function.

So, here psi the wave function and let us say I have these variables q one q two etcetera

up to q f; these f variables which decide what the value of this wave function going to be.

So, once we know this, then the question is how much information regarding the wave

function do I require. So, it before I try to explain that, let me explain that f here is a

number of degrees of freedom in the system, and the independent variables q one q two

etcetera this is a set of f coordinates that is required to specify the system completely.

So, once again coming back is it possible to understand or obtain complete information

regarding psi for a very complicated system. The answer is well it may be possible for



simple systems, but it is not possible for very complicated systems. But it still does not

prevent us from defining a microscopic state and this is how we are going to do it.

The information regarding the psi the wave function psi is obtained as a solution of the

Schrodinger  equation.  So,  we are  going  to  look  at  the  solutions  of  the  Schrodinger

equation for simple model systems and try and understand what these microscopic states

are and how we can count the number of possible microscopic states. So, let us look at

the renewed definition of the microstate.

(Refer Slide Time: 06:57)

We would say the microstate or a quantum state of a system does not matter. However,

complicated  is,  can  always  be  defined  in  terms  of  f  quantum numbers;  and  these  f

quantum  numbers;  obviously,  will  ask  me  the  question  where  do  I  get  them  from;

obviously, you would get it from the solution of the Schrodinger equation and they these

quantum  numbers  tell  us  how  many  solutions  are  possible  which  will  obey  the

Schrodinger equation.



(Refer Slide Time: 07:34)

Now before I proceed further, I would like to point out there whenever you are using the

Schrodinger  equation,  you  must  be  very  careful  in  the  sense  that  the  Schrodinger

equation at the microscopic level, when it describes the properties of the system, it solves

the one solves the Schrodinger equation at absolute 0 of the temperature.

If you look at the specific functional form of the Hamiltonian operator that operates on

the wave function side do you find any temperature there? No because the wave function

because the Hamiltonian is a summation of the kinetic energy operator plus the potential

energy operator and temperature does not appear anywhere. So, basically you are looking

for the microscopic state of the system at absolute 0 of temperature. You should also

remember  that  whenever  you are  solving the Schrodinger  equation,  you are  actually

specifying the volume of the system and also the number of constituent particles. And

then you are looking for solutions of the Schrodinger equation for various allowed values

of the energy Eigen state.

So, for one energy Eigen state the total energy of the system is constant, the volume is

given and then the number of particles  is  fixed.  And therefore,  I  would say that  the

solution applies to an isolated system, which is not interacting with the surrounding. Of

course, this has to be the case when you are in the absence of any external field. Now

with this background in mind let us go and have a look at some of the examples as to

how these solutions can be used to describe the microscopic states of a system.



(Refer Slide Time: 09:41)

We will  start  with  the  simplest  case  where  there  is  only one  particle  present  in  the

system. So, typically this would look like this picture, you have a huge system and there

is probably one particle present in it and why can I see this single particle with naked

eyes the answer is no.

Therefore,  any such picture  tells  you that  you are  now modelling  the  system at  the

microscopic length scale, and then the dimensions of the box as shown here in a small

scale this must be if let us say that this is a, then this must be much much greater than the

size of this particle which typically is taken in terms of sigma. And I would say that

therefore, this is a typical representation of the microscopic snapshot of the system which

we are trying to investigate now. 

So, the first example that we take is a very simple one.



(Refer Slide Time: 10:55)

It is a spin half particle with a magnetic moment mu. Now what is a spin half particle?

This is a particle whose spin angular momentum can take up only two allowed values,

when it is present in the presence of an external field.

So,  typically  solution  of  the  Schrodinger  equation  tells  you  that  the  spin  angular

momentum under such cases, will be either plus half or minus half of the basic spin

angular momentum. So, here a typical microscopic state of the system would look like

this. So, if this is the direction of the applied field, this would be corresponding to the

spin up state, where the spinners aligned parallel to the direction of the field.

And in that case the associated quantum number would be such that you will have the m

value equal to plus half, and the energy Eigen state will have the value of minus mu into

H.  On  the  other  hand  there  is  another  possibility  allowed  by  the  rules  of  quantum

mechanics and that is the spin down state, where the single spin half particle that we are

considering, is now directed opposite to the direction of the applied field and accordingly

its energy is e is equal to plus mu H. So, what do we learn from this particular slide we

learn that I have a system where n is equal to 1 and let us say the volume is fixed at v.

Now here capital n is equal to 1. So, for this given microstate of the system this is a

typical snapshot of the microscopic state of the system, this is another possible snapshot

of the microscopic state of the system. If I now fix the value of the total energy of the

system, at this value there is only one microscopic state which is this. If I fix the total



energy of the system at this value then; what is the possible microscopic state, this is the

only possible microscopic state as allowed by the rules of quantum mechanics.

(Refer Slide Time: 13:33)

Now there can be other  situations  as well  and in  general  this  is  one of the simplest

situations.

That you can have let us say you have a single particle present in a constant volume, and

solution of the Schrodinger equation for this particle gives you only two energy states.

The lower energy state is the 0 of the energy which I designate as epsilon equal to 0. And

the upper energy state which is higher than the 0 energy state is associated with some

energy value epsilon. If I use a quantum number in that case I will say that let us say that

this quantum number is n. So, how many quantum numbers can I find here associated

with  these  two  possible  solutions?  Of  course,  there  will  be  two  quantum  numbers

associated with these two values.  So, typically let  us say that the first  value allowed

value of the quantum number is n equal to 0.

Correspondingly the energy Eigen state as shown here will be equal to 0, and this is

going to be a typical representation of the microscopic state of the system. So, by using

this ball all I am trying to say is the system now occupies the lower energy Eigen state,

Now when the quantum number n is equal to 1. So, it has taken up its second possible

value then the energy of the system would be equal to epsilon, and then this is going to

be a typical representation of the microscopic state. So, it says that there are two energy



states available to the system, given a chance it can either be here or be here when the

system is in the first microstate.

The total energy of the system comprised of the single particle is E equal to 0, but when

the system is comprised of this microstate, the total energy is equal to 0. Now can you

answer this question which microstate will be possible for this system if the total energy

is epsilon; of course only this system is possible. Now let us once again see some more

examples so that we understand how the quantum numbers are being used.

(Refer Slide Time: 16:05)

Now, we take up this one dimensional simple harmonic oscillator. So, as all of us know

that the solution to the Schrodinger equation to define the microscopic state of a system.

For any such system is characterized by a single vibrational quantum number or a simple

quantum number v and the discrete values of energy that are obtained by the solution of

the Schrodinger equation is given by Ev, that is h cross omega multiplied by v plus half.

Now what is omega in this case omega is the intrinsic angular frequency of the simple

harmonic oscillator; h cross is h by 2 pi where h is the plan constant and this will be used

all throughout our discussion. So, here are different possible values of E varies from each

other in terms of this quantum number v. So, the question is what are the different values

of v does quantum mechanics allow; it is possible to show that we can take a values from

0 1 2 and so on and so forth up to infinity.



So, what do we learn from this kind of result,  we understand that if I have a simple

harmonic oscillator that is present in a one dimension in that case how many microscopic

states for the system are possible? The answer is infinitel;  how do I know that there

infinite that is because v can take up an infinite number of different values. Now let us

have a more pictorial representation of these microscopic states and they are as follows.

So, if  I  plot  the different  energy values  possible  for different  values  of the quantum

number v, this is the energy value for v equal to 0, this is the energy value for v equal to

1 v equal to 2, v equal to 3, v equal to 4 and so on and so forth.

The interesting thing to note here is that, the difference in energy values between any two

pair of energy states is the same independent of whether you are looking at the energy

difference between v equal to 0 and v equal to 1 states or v equal to 3 and v equal to 2

states it does not matter, all these energy gaps are the same. Now when I understand this,

then I should also be able to visualize where this energy states came from. In the original

Hamiltonian one used a potential energy function v, which is given by this solid line and

told me that as the system undergoes a displacement from its mean position there is a

potential nonzero potential energy that tries to restore it back to its position.

And the solution of the Schrodinger equation has now given you these discrete energy

values,  which  are  possible  which  are  allowed  for  the  system according  to  quantum

mechanics. And we understand that many such energy states are possible even if you

have a single particle and this particle is present in just one dimension. 



(Refer Slide Time: 20:00)

So, let us next have a look at what these microscopic states are. So, as before I have these

level levels with me and this is typically how I am going to represent a microscopic state

where the system is present the single particle is present in the lowest energy Eigen state

corresponding to the lowest value of the quantum number v.

So, that is v equal to 0 therefore, what would be the energy of this system if I put v equal

to 0 in this expression, this is what I get its half h cross omega and you are quite aware of

the fact that this is the 0 point energy of the one dimensional simple harmonic oscillator.

Now I can also go back and represent the situation when this single particle is occupying

the energy Eigen state with v equal to 1, then the energy of the system is going to be 3 by

2 h cross omega corresponding to the value, that I obtained by putting v is equal to 1

here. I can also have another microscopic state which is corresponding to v equal to 3.

Where the system is placed high up in one of these are energy Eigen states and the

corresponding energy is 7 by 2 h cross omega. So, what does it tell us it tells us that even

if I have a single particle and I have this particle in just one dimension even in that case

depending on what are the energy of the system is the system can have many many

different microscopic states, and that I can either represent pictorially or I can in general

say that depending on what are the value of the quantum number v is, I can describe the

corresponding  microscopic  state  of  a  simple  harmonic  oscillator  present  in  one

dimension.
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The next system that I will just touch upon is a rigid rotor; and it is known from quantum

mechanics that the discrete energy values that are allowed for a rigid rotor is given by

this expression where it is characterized by this rotational quantum number J and it is

shown that E J is given by J into J plus 1 into v, where J can take up discrete integer

values starting from 0 1 2 and so on up to infinity. So, what are the possible E J values

that you can think of? You can think of an infinite number of possibilities, in this case

there is another quantity that appears and this quantity is B. So, what does B represent? B

represents the rotational constant and it is a characteristic property of the system that you

are studying. 

Because  it  depends  on  the  moment  of  an  inertia  of  this  rigid  rotor,  and  that  is  the

information of the specific system that is carried by B. So, once again we have a system,

where I have a single particle which is a rigid rotor and there are infinite number of

values possible for the quantum number J, with which I associate the discrete energy

values E J therefore, the different microscopic states are going to be characterized by

different  values  of  J.  Now once  I  have  some  ideas  about  these  simple  very  simple

systems,  let  me now go back and pick  up a  little  different  idea  but  still  in  the  one

dimension.
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And in your  introductory  courses  on quantum mechanics  or quantum chemistry, you

have come across this situation where a particle is confined within a one dimensional

box, and if this length of confinement is a and if the particle has a mass m, then the

discrete energy values that are possible for the system are given by E n, that depends on

the mass m the length a of the direction in which it is confined and it also depends on one

particular quantum number which is represented as n. An n can take a values from 1 2 3

to infinity. And therefore, I understand that for a particle in a one dimensional box, once

again we are faced with the situation that an infinite number of microscopic states is

possible and for each value of n I have an associated value of E n, which gives the value

of energy Eigen state of my system. 

Now if I want to have a closer look here. So, this is how the energy states vary with the

quantum number. So, here this represents the energy value with respect to n equal to 1,

this represents the energy value with respect to n equal to 2 3 4 and so on and so forth.

So, what  I  can see is  quantum mechanics  once again has predicted a discrete  set  of

energy values, corresponding to each value of the quantum number n, and then I can

basically generate different microscopic states by using this quantum number n, and I

also understand here this particular example is different from my previous example; in

the sense that here I have energy values as before increasing with n. 



So, for n equal to 1 the energy value is h square by 8 m a square, let us divide e n by this

h square divided by 8 m n square a square. So, what I am left with this n square. So, as

you see for n equal to 1 the scaled value of E that is 1, for n equal to 2 the value is four

and so on and so forth. Now have a look at this, if I am in this region then the energy

difference between two successive energy states is small, but as I go higher and higher

up this value goes on increasing. So, as I would say that this is a very different set of

microscopic states from what we have seen in the previous case of simple harmonic

oscillator.

(Refer Slide Time: 27:34)

And if I want to visualize some of these states in the for a particle in a one dimensional

box. So, can we guess what is going to be the energy E prime that is defined here, which

is equal to n square. So, here I find that my system is present in the state where n is equal

to 1. As a result I would say that the energy of the system is going to be e prime is equal

to1. Similarly here the system is present corresponding to n equal to 2 and therefore, e

prime that  energy of the system in units  of h square by 8 m a square is  equal  to 4

similarly this is a pictorial representation of the system corresponding to n equal to 5 and

E prime value e prime equal to 25.

So, we have come to the conclusion of this very simple lecture where we have used the

quantum numbers to define the microscopic states of the system. Every microscopic state

has a specific value for it the quantum number of their Eigen states that we are interested



in. We have looked at the system, where we have only a single particle for which the

Schrodinger equation is solved under constant volume and constant number of particle

condition and the solutions give us the different discrete energy Eigen states. What we

will see next is how the increase in dimension and the increase in the number of particles

complicate the situation and increase the number of microscopic states possible.

Thank you.


