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Welcome, today we are going to discuss perhaps the most difficult topic that we have

introduced in this course and that is the rate of a chemical reaction as we understand it by

using the principles of molecular thermodynamics.

(Refer Slide Time: 00:33)

Now, as chemists, we always come across chemical reactions, but the view that we take

of a chemical reaction is usually a macroscopic view.
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So, when we go through the laboratory, we do see chemical reactions where you can see

a variety of effects like the ones that have been highlighted over here. There may be a

large amount of heat released; there may be a drastic change in color; accompanying the

chemical change that you are observing through the chemical through your experiment.

Now, if I want to find out the rate of such chemical reaction in that case the standard

thing  to  do  schematically  is  you  write  down a  Stoichiometric  chemical  equation  as

shown here. And then you write the rate of the reaction as the rate at which the reactant A

is degrading in time, so that the products P and Q are formed.

And in general what we find is in the experiments, it is found convenient to study if the

rate depends on the concentration of the you know reactant which means that whether it

is directly proportional to the concentration of the reactant A or it is proportional to the

square of the concentration of the reactant A and so on and so forth. So, this quantity n,

this is traditionally known as the order of the reaction.

And then what we do in the experiments is as follows. We try to for example, plot the

change in concentration of A as a function of time and depending on what the order of

the  reaction  is.  You  can  have  for  the  first  order  reaction  a  rapid  decay  in  the

concentration of A as it converts to P and Q, but if I have a second order reaction then the

decay profile of a concentration of A in time is going to be different. So, then from this

experimental data what one does is one finds out the slope of this curve and fits it to this



equation  and gives us the rate  of  the reaction. Now, in  this  rate  of  the reaction,  the

important quantity is this rate constant, which is a proportionality constant that tells me

that the for the given reaction how the rate will be estimated for a given concentration of

A.

So, the challenge of today’s lecture is if we can give a microscopic interpretation of this

rate constant k. Because as you see here the rate that we are measuring we are doing

using all the macroscopic equipments to do that; concentration of A is something like

moles per liter, which once again is a macroscopic concentration, therefore, k is also a

macroscopic quantity. And we are said to find out a microscopic interpretation of that.

(Refer Slide Time: 03:46)

Now, in order to do this; obviously, I need to set up the microscopic view of the chemical

reactions.
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And when I do this we understand that as chemists we are usually we are usually familiar

with a molecular picture like this associated with a chemical reaction. For example, here

you see that this molecule appears approaches this molecule, and takes one atom from it,

and leaves. On the other hand, in this particular case, as you see that the green molecule

comes in and takes away a group like this is an NH 3, which was probably coordinated to

the yellow atom and takes it away.

Or you can even have very complicated situations for example, in an enzyme catalyzed

situation. So, this is a proton transfer reaction within an enzyme where you see that these

water  molecules  are  exchanging  one  proton between  themselves.  So,  that  one  water

molecule loses a proton and eventually this proton lands up on this particular nitrogen

atom. 

So, the question is as you see that the system is undergoing a series of transformations

whereby it goes through a very large number of microscopic states. Therefore, if you

want to find out that macroscopic rate constant, you need to take into account all these

microscopic states that are available to the system.
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Therefore, if we ask this question how do we map the macroscopic rate constant to the

molecular model that we are usually using to understand them. The answer is we need to

average over all possible microscopic states of the chemical reaction.

(Refer Slide Time: 05:43)

And therefore, this brings us to the question of how do I model the microscopic states in

a  system  where  unlike  the  previous  cases  that  we  discussed,  we  do  not  have  non

interacting molecules. Right now, I have interacting molecules which participate in the

making and the breaking of chemical  bonds.  And therefore,  you understand that  this



problem  has  taken  an  enormously  difficult  proportion.  And  in  this  case  with  the

development of quantum chemistry, we now know that the different microscopic states

of these interacting molecules are represented in terms of what is known as a potential

energy surface.

So, what is the potential energy surface, typically a potential energy surface in terms of

two variables say x 1 and x 2 they would look like this ok. And now you see that this

potential energy surface has a very complicated structure; it has some kind of what is

called a local  minimum, where the potential  energy takes up the minimum value for

certain values of x 1 and x 2. There may be other local minima like one here, but there

can be global  minimum where the potential  energy of the system of this  interacting

system is the minimum amongst all the values of x 1 and x 2 available to it.

Now, a chemical reaction is observed or is modeled as a transition from one of these

minimum by climbing this hill and going over to the minimum on the other side of the

potential energy surface. Therefore, this top of the hill, which allows us to go from one

side of the hill to the other is known as a saddle point which is the location of the so

called transition state of the reaction. 

Now, we are going to use many simple model systems to understand how such structures

appear  and how to interpret  them so that  we understand the task at  hand that  is  the

averaging over different microscopic states associated with the chemical reaction.

(Refer Slide Time: 08:16)



So, for this purpose, let me once again show you that well the task is I have a picture like

this, where I can have something called a reaction coordinate that distinguishes between

the  reactant  and  the  product  state,  and  there  is  an  energy  barrier  in  between.  And

therefore,  I would like to find out the energy surface such that the transition state is

located at the maximum as the system passes from one minimum to the other minimum

as the reaction progresses from the reactant to the product state.

(Refer Slide Time: 08:53)

Now, if I go ahead and try to ask this question how do we obtain such potential energy

surfaces.
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So, let us go back to the very qualitative consideration of the quantum mechanical model

of such interacting systems. So, let us say that I have M nuclei located at the positions R

capital R alpha, and with charges and masses and momenta specified for each of them. I

can also have capital N electrons at their locations for a given macroscopic state with

their respective charges, masses and momenta. And then the picture for a system like this

is given here. 

So, can you identify what kind of molecule is this? Obviously, this is H 2 plus where I

have one hydrogen atom at the position one hydrogen nucleus at the position capital R 1,

I have another hydrogen nucleus at the position R 2, and there is a single electron which

is located somewhere here with a position vector small R 1 ok.
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So, if I now set up the Schrodinger equation for a system like this, what I would get is I

have to start from the Hamiltonian of the molecule. So, the Hamiltonian of course, now

requires many, many different terms to describe the contribution of kinetic energy as well

as the potential energy of the different things present in the system.

So,  initially  I  have this  term which represents  the Hamiltonian  corresponding to  the

kinetic energy of the capital N nuclear is not in the system. Then I also have the part of

the Hamiltonian, which represents the kinetic energy of all the capital N electrons in the

system. And then I start having the potential energy terms. 

So,  this  is  the  potential  energy term for  the  interaction  between the  different  nuclei

present in the system. And this is the term where you have the interaction between the

different electrons present in the system. And finally, I have one term which represents

the interaction between the nucleus of having the charge Z alpha into e with an electron

having the charge minus e and they are located at these two positions.
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Now, a simplified and compact notation of the Schrodinger equation to be solved then is

given like this where this read capital X’s represent all the position coordinates of all the

nuclear present in the system. And these blue small x’s represent the coordinates position

coordinates of all the electrons present in the system. Now, under the Born-Oppenheimer

approximation we know that the motion of the electrons and the nucleus they take place

at very different time scales. 

As a result of which we can actually solve the Schrodinger equation for the electrons by

keeping the nuclei fixed at certain positions. So, this is exactly what we have done next.

And we find that  now the Schrodinger  equation  that  I  have to solve is  given by an

equation like this where capital X these positions are fixed.
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Now, when we solve these Schrodinger equations for a fixed value of X the results are

something like this. So, by solving the Schrodinger equation, we get the energy Eigen

states. So, let me say that if I fix the two this is a particular molecule that I am looking at,

so it has one atom which is a red atom, another atom which is a blue atom. And the

center to center distance is given by capital R. 

Now, if I fix it at this particular value of R which corresponds to this value of R here, this

is the ground electronic energy by obtained by solving the Schrodinger equation. And

this  is  the first  excited  electronic  energy that  is  obtained from the solving  the same

equation.

Now, as  you  understand  that  I  can  fix  this  relative  separation  of  the  two  atoms  at

different values, for example, if I fix it at this value which is smaller than this before then

let us say that this is a corresponding value of R. And these are the corresponding values

of the ground and the first excited electronic state of this molecule. Now, this way we

can actually generate all such energy values for different inter atomic separation within

the molecule.

And as you understand that if the two atoms invade each other space then obviously, the

energy is going to be very high and we have not shown it in this picture. So, by solving

the Schrodinger equation what is it that we are getting now, what we are getting is we are

now joining all the ground state electronic energies for the different geometries through



this dark blue line, and all the first excited state electronic energies with this red line. So,

the lower curve gives me the potential energy curve for this particular system and this is

the ground state potential energy curve. And this is the first excited state potential energy

curve obtained by solving the Schrodinger equation, and the first excited state solution of

it at different geometries. So, this is possibly the simplest representation of a potential

energy between the within a molecule, when I am changing their relative geometry.

Now, if I have a more complicated polyatomic molecule, you understand that in addition

to R, I need to have many many more parameters. And in that case the potential energy

curve does not remain a one-dimensional two-dimensional a curve, but in this case what

I will get is a molecular potential  energy hyper surface with a very large number of

dimensions in the case of a complicated molecular system.

(Refer Slide Time: 15:24)

Now, what is the use of this molecular potential energy surface. As you see if I write

down the nuclear  part  of the Schrodinger equation,  I  find that  this  electronic energy

actually  plays  the  role  of  the  potential  energy  on  which  the  nuclear  move  ok.  And

therefore, here comes the importance of the electronic energies for fixed geometry of

nuclei, fixed geometry of the nuclei because the solution of the electronic Schrodinger

equation gives me the potential energy for nuclear motion. 

But  please  remember  there  is  no  temperature  in  Schrodinger  equation  therefore,

whatever  have  solved  here  it  has  been  calculated  at  t  equal  to  zero  Kelvin.  So,  in



Schrodinger  equation  we  are  solving  for  the  microscopic  value  of  the  microscopics

description of the system at t equal to 0 Kelvin. Therefore, the potential energy surface

that  I  get  is  valid  description  of  the  interaction  between  the  different  parts  of  the

molecules at 0 Kelvin

Now, then obviously, the question  is  at  a  finite  temperature,  how do I  represent  the

chemical  reaction  on the  potential  energy surface.  This  is  in  general  visualized  as  a

rolling of a ball on the potential energy surface that I will show to you later. 

So, depending on the amount of thermal energy available to the system then the kinetic

energy  is  high  or  low and  that  ensures  the  extent  to  which  the  system can  explore

different geometries. If you are at a very low temperature in the previous case, the two

atoms cannot have large kinetic energy, and therefore, they will be forced to stay in close

to each other thereby sampling only the geometry is near to the minimum of the potential

energy surface.
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Now, let me take an example. So, this is a chemical reaction which is very simple. A

hydrogen molecule interacting with an hydrogen atom. So, initially hydrogen atom A and

B are bonded to each other and there is another atom C, which is coming close. And at

the end of the reaction H A is isolated and a bond has been formed between H B and H

C. Now, if I look at the potential energy surface that I get from here this is described in



terms of two distances; one is the distance between the hydrogen atoms A and B, and

another one is the distance between hydrogen atoms B and C.

So, as you see that in the reactant state A and B, these two must be having a minimum

potential energy value indicating that there is a stable hydrogen stable chemical bond

between them. And therefore, I see that this is where the reactant state for this reaction

must be located. And under that condition, I must be having a large distance between B

and C ok. So, here I have this R B C, it is going like this. So, since R B C increases in

this  direction,  therefore at this point R A B is small,  and R B C that is the distance

between the hydrogen atoms B and C that is very large.

Now, as the system goes to this state, where there is a chemical bond between B and C.

What do I expect? I expect a minimum in the in the potential energy corresponding to a

small  distance between B and C, so that  exactly  appears over here.  And under such

circumstances I must be having a large distance between the hydrogen atoms A and B.

So, as you see as expected, this minimum appears at a very large value of R A B. And

here as you see that we have connected equal energy points by these blue curves ok.

Now, this is a three-dimensional picture. Most of the times it is found that it is much

more easier  to look at  what  is  known as a  contour  diagram of this  potential  energy

surface. So, in this potential energy surface contour diagram, as you see each minimum

corresponds to this kind of contours with very small diameter. So, this is a minimum

which is corresponding to this product state. 

This  is  the  minimum which corresponds to  an  equilibrium bond length  between  the

hydrogen atoms A and B. Now, this blue lines now appear as these contours or curves in

the two-dimensional space. And here you see that larger the diameter of the contour from

some kind of a center which means that you are looking at higher energies. Therefore,

this energy would appear here, but this energy would appear at a much lower value like

this contour or this contour ok.
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Then the question is what happens when the reaction takes place? When the reaction

takes place the system, for example, starts from the reactant well potential energy well

from here then goes climbs up the energy hills. So, if you come from one this region to

this region, you are going from lower energy to higher energy. 

Then you pass through the saddle point and then you decay to the product state, but not

always that the system when it attempts to scale this mountain of potential energy barrier,

it will be able to do it just as cleanly as this. So, it gets it climbs up this way and then it

goes this way and tries to find its path through the saddle point, and decays like this.

And many of the cases it so happens that the system is unable to climb the barrier at all

because of the very high energy required for this. Now, if it so happens that at a given

temperature the kinetic energy available to the system is not enough, then it attempts to

scale the energy barrier, but once again falls back. And while doing this, it may fall back

directly  like  this  or  it  may  try  to  rattle  in  that  particular  potential  energy  well  and

eventually go back to the minimum.

Now, once it is near this saddle point, so the saddle point is this region. Now, once it is

near the saddle point it has two options. The first option that it has is I will go from this

lower energy value through this direction through the saddle point and come here, so that

is one kind of option it has. Or while it reaches the saddle point, instead of going here, it

can try climbing in  other  directions  like this  or  this,  but  as you see that  the second



direction requires a very large amount of energy. And a system as we know that is always

trying to minimize the energy cost because it has limited thermal energy available to it.

As a result of this, I would say that in the plane R AB, R BC there will be only some

combinations of R AB and R BC that will allow the system to pass from the reactant well

to the product well. And those combinations of R AB and R BC which take the system

from the  reactant  to  the  product  well  through a  minimum energy  path  is  called  the

reaction coordinate. So, if the system moves along the reaction coordinate, it undergoes a

transition from the reactant to the product state through a minimum energy path ok. And

in this particular case, the combination of R AB and R BC that gives you this minimum

energy path is known as the reaction coordinate.

(Refer Slide Time: 24:10)

And therefore,  once we have established what the reaction coordinate is then we can

project  the  potential  energy  surface  along  this  reaction  coordinate.  To get  this  very

familiar one-dimensional potential energy profile that tells me that well I have here a

potential energy well corresponding to the reactant where there is a stable chemical bond

between the hydrogen atoms A and B. 

There is another reactant well over here where there is a stable chemical bond between

the hydrogen atoms B and C. And during the transition from this state to this state the

system had to pass through a transition state here where A, A is still bonded to B, but it



has started forming its bond to C. So, this is the hypothesis of a transition state or an

activated complex.
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Now, within this molecular picture, then one tries to understand what happens when I

adopt such a picture for the molecular model of the chemical reaction. So, as you see as

the system samples many, many microscopic states accessible to a during the reaction

this is how the chemical reaction is represented as a motion of a ball along the reaction

coordinate starting from the reactant well and climbing the activation barrier and then

finally relaxing to the product file. 

So, this is the molecular picture and the many different ways that the system can do this

is the array of molecular thermodynamics.
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So,  let  us  now  quickly  discuss  how  to  get  the  rate  of  chemical  reaction  from  the

perspective of molecular thermodynamics.

(Refer Slide Time: 25:58)

And in this  context,  we are going to use the same potential  energy profile along the

reaction  coordinate.  And we are  going to  consider  this  very  simple  kinetics  scheme

which is A and B reacting with each other. And while doing so they rapidly establish an

equilibrium to produce the transition state  or the activated  complex X dagger  which

subsequently decays into the product P. Therefore,  in this picture what I have is this



minimum corresponds to the two reactants A and B. And then this maximum corresponds

to the formation of the activated complex X dagger. And finally, the second minimum in

this profile corresponds to the product or the products here there is only one product P.

So, once we have established this kind of a picture, in that case the rate of the chemical

reaction can be given by this  rate  constant  multiplied by the concentration of A into

concentration of B, but please remember concentration of A is given in terms of moles

per liters. So, all the quantities that I see here are macroscopic quantities, but the picture

that I am associating here is a microscopic one.

So, what I am going to do is I am going to write down according to this my kinetic

scheme valid at the molecular level, what can be v, v is going to be proportional to the

concentration of the activated complex. And the v is therefore, given by k dagger into the

concentration of the activated complex. So, k dagger is the rate constant with which X

dagger decays into the product. 

Now, with this we can also write down if there is an equilibrium between A and B the

molecules of A and molecules of B forming with the molecules of the activated complex.

This can be written down in terms of partial pressures like this. So, I am now assuming

that  this  is  a  gas  phase  reaction  where  the  total  system  is  maintained  at  a  given

temperature T and at a standard pressure p naught ok.
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So, under such condition I can also say that well since I am my all my rate laws are

written in terms of the concentration of the species, I will replace the partial pressures in

terms of molar concentrations. And if I do that then I can write down the equilibrium

constant for the formation of the activated complex like this. So, this is done in terms of

things that we know very, very well from our initial knowledge of physical chemistry.

(Refer Slide Time: 28:48)

Now, we will  go further and then say that well  from the equilibrium constant,  I can

rewrite  the  concentration  of  the  activated  complex.  And  now combining  these  three

equations, I can write down k reaction is a quantity which depends on this constant k

dagger and the equilibrium constant k equilibrium dagger. 

So,  the task of molecular  thermodynamics  is  evaluation of this  rate  constant  small  k

dagger and this equilibrium constant K equilibrium dagger given the scheme as shown

here.
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Now, this is something for which we can use what we have learned before for chemical

equilibrium between ideal gases. So, this is given in terms of an expression like this. We

have seen this before, but the difference here is now the different components of the

reaction these are present at different energies and that is the reason why this additional

exponential term appears. 

So, what are these E naught and q j m naught. So, what I find here is E a that is the

activation energy as shown here this is nothing but the E naught that I have shown here

and that is the 0 Kelvin potential energy of the activated complex minus the same energy

for the reactant A minus the same energy from the reactant B.

Therefore,  if  I  know  this  potential  energy  profile  from the  solution  of  Schrodinger

equation, I can find out E a. At the same time, I see that I am using these q j terms for

each component in the reaction mixture this is nothing but the molar canonical partition

function for the jth component at a given temperature T, where the total volume of the

gas corresponds to the standard pressure P.
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So, using these two notations, what we can do is we can rewrite the K equilibrium like

this. And now I understand that I can further simplify this algebraic equation.
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And have an expression of q equilibrium in terms of this in not then Avogadro number

and the molar partition functions for the three components in the equilibrium mixture X

dagger A and B. Now, let us assume that the difference the system when it forms this

activated  complex,  there  is  a  it  has  several  bonds  in  it.  And  one  of  these  bonds  is

executing a very loose vibration ok, and this loose vibration it is so weak that it leads to



the decomposition of that particular bond. If that happens is very easy to say that X

dagger which is  which may be comprised of many, many atoms, but one vibrational

mode of that atom is loose. And that is becoming loose as the system more that is loose

and that bond is broken as the system goes from the reactant to the product state across

the transition state.

As a result  I  can write  that the this  q naught  of x dagger this  is  q loose that  is  the

vibrational partition function corresponding to the loose vibrational mode multiplied by

the vibrational partition function for the rest of the vibrational modes for the complex X

dagger where because of strong bonds present within X dagger. 

They are not undergoing any loose vibration. Now, a loose vibration means a very small

value of the intrinsic angular frequency of vibration. And under such condition, it can be

very easily shown that q loose is going to be given by this particular expression it is k B

T by h nu dagger. And therefore, under such assumption I say that I am actually able to

find  out  what  the  molar  partition  function  standard  molar  partition  function  for  the

activated complex is in terms of a loose vibrational mode.
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Now, under such condition then I know how to write down the equilibrium constant and

it  is  this  angular  frequency  with  which  X  dagger  would  decay  into  the  product.

Therefore, k dagger is also nu dagger. And this is of course, valid if the system once it



reaches the transition state immediately decays through the product and never comes

back to the reactant state.
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Now, if I combine these two conditions then what I get is a molecular expression for the

rate constant k reaction in terms of the molecular quantities like q bar x tagger, q A m

naught q B m naught etcetera, etcetera and this is the Eyring equation. 

So, what we have learnt from here is the k reaction can indeed be mapped onto the

experimentally known result of Arrhenius equation. We have retrieved this exponential

term which  includes  the  activation  barrier  and we have  a  pre  exponential  term that

depends on the molecular nature of the participants in the reaction.
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So, to conclude, first of all in order to understand the microscopic states of the reaction,

we have introduced a one-dimensional potential energy profile for the reaction. Then we

realize  that  for  a  certain  amount  of  kinetic  energy  available  to  the  system with  the

thermal  energy available  to  the  system,  it  is  most  probable  that  most  of  the  system

reactant  molecules  will  remain  here  executing  small  amplitude  motion  within  the

reactant well.

Now, what happens is it is much system having a high potential energy and scaling this

barrier is a less probable process, because the probability of a system being found here is

E to the power of minus beta e, and therefore, with increasing value of E, the probability

decreases. So, what happens is with some accessible amount of kinetic energy the system

tries to climb back, and then it comes back again ok.
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And then finally  under  certain  conditions  very  rarely what  happens is  a  trajectory  a

system can start from the reactant well and then according to transition state theory, it

crosses the barrier and eventually it settles in the product well. Therefore, if I want to

calculate the rate constant for this kind of a reaction, I must take into account, what this

potential energy profile is what, what are the mechanisms through which the system can

climb. 

The barrier, cross the barrier and then settle into the product and all such barrier crossing

events needs to be taken into account for the averaging to calculate the rate constant of

the reaction.

Thank you.


