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Welcome. Let us now continue our discussion of using the Thermodynamic Potentials in

predicting the final equilibrium state of a given system that may or may not be connected

to the reservoir.

(Refer Slide Time: 00:31)

So, once again the basis of our discussion is the combination of the first and the second

law of thermodynamics; where we say that whatever the process maybe, I should have

this condition valid. The inequality sign is valid when I am looking for a spontaneous

change in state and the equality sign is valid, when the system has attained equilibrium.
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Now, the basic question that we are asking is this; is it possible to describe the system in

equilibrium; the condition of equilibrium in a system that is in contact with the reservoir?

And once that system property has become equal to the reservoir property, can I use an

energy function just like U to describe the condition of equilibrium? So, to be more

specific for an isolated system; we have already seen that it is a minimization of internal

energy that characterizes the condition of equilibrium. 

But when I have added a thermostat to the system or a barostat to the system or if I am

maintaining the system at a constant temperature or pressure; I understand that within my

measurable setup, I must be having the temperature of the system and the reservoir equal

in this case; the pressures between the system and reservoir equal in this case. And both

the  temperature  and  the  pressure  must  satisfy  the  equality  condition,  when  I  have

attached the system to a thermostat and barostat.

But please note that all  of these quantities that I mentioned here; these are intensive

variables.  On the other  hand, in the original  isolated system I was talking about  the

equilibrium condition in terms of a system property and this is the internal energy. So,

the  question  is  for  all  the  other  systems;  is  it  possible  to  describe  the  condition  of

equilibrium using some other energy function that would be entirely a property of the

system?
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In order to do that, I am going to show you a little mathematical trick that is extremely

important in connecting the different energy functions that we have come across so far.

So,  that  different  energy  functions  that  we  have  defined  so  far  are  internal  energy,

Helmholtz free energy, enthalpy as well as the Gibbs free energy.

(Refer Slide Time: 03:28)

Now, I am going to show you how these thermodynamic potentials can be derived from

the  internal  energy  U,  using  a  mathematical  method  which  is  known  as  Legendre

transformation.
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So, let us have a look at this method; now many of you must be quite familiar with this

kind of a picture. So, what I have here is along this axis; I am plotting my independent

variable x and along this axis I am plotting a dependent variable y and the dependence of

y on x is expressed in terms of some kind of a mathematical equation; that has been

shown here y is a function of x.

Now let me concentrate on a given point on this curve; this curve on all points of this

curve; this functional relationship is satisfied. Now, let me consider this particular point

where I have drawn a tangent line. So, a; b is the tangent to this curve at the point where

the independent variable has a value x and the corresponding value of the dependent

variable is given by this expression. 

So, the straight line a b is a tangent line at the point x y; let us say that the slope of this

straight line is P and the intercept is psi. Now I can very easily define what P and psi are;

so P by definition can be obtained as dy; dx, since I know y as a function of x; I should

be able to obtain this for well behaved functions and then psi becomes equal to y minus P

x and using  this,  I  can  now think of  carrying  out  a  transformation  which I  call  the

Legendre transformation. 

So, what I do is; I have three equations, one equation is this; I have this is my first

equation and I have this is my second equation and this is my third equation. Between

these three equations, if I eliminate x and y; what would I get? I would get a functional



relationship between P and psi. So, let us have a look at what we get? So all we get when

you plot psi as a function of P this is known as an envelope or a family of tangent lines to

the original curve y as a function of x. So, what is the difference between this and this

representation?

Both of them are representing the same points in the two dimensional space, but here I

am using the x y representation and here I am using the envelope representation.

(Refer Slide Time: 06:51)

And therefore, I would say that both the equations y as a function of x and psi as the

function of P are equivalent representations of the same curve.
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And this also tells me that what kind of representation that I am talking about; in the first

representation the independent variable was x and the dependent variable was y. In my

new representation, I have as my independent variable; the slope of the curve P. So, P is

defined as dy; dx or the first derivative of the dependent variable with respect to the

independent variable. 

So, now what happens to the dependent variable? The dependent variable is now given

this kind of representation; this is the standard way of representing psi, it says that now I

have a new form of y; where instead of x I am now using P as the independent variable.

So, what is psi? This is nothing, but y minus P x. Once you understand this, we can take

a very simple example and see how this works.
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Let me take this a very simple expression that y is equal to x square. In that case if I

define P; P is dy; dx and its trivial to show that P is equal to 2 x. Now what would be

equal to psi? psi is going to be equal to y minus P x. Now between these three I am going

to eliminate x and y; in order to do this, the first thing that I do is I write psi as; what is

y? y is x square minus P; P is 2 into x multiplied by x or psi is equal to x square minus 2

x square that is equal to minus x square.

If that is so; then only half of my transformation is over, now I know P as a function of x

and I know psi as a function of x. Therefore, what is psi as a function of P? I can very

easily say that I am going to eliminate x between these two relations and I am going to

get psi as one fourth of 2 x whole square. Or in other words, psi is going to be equal to

minus P square.

So, the original curve; which is a parabola that has a new representation now in terms of

its envelopes, which is a family of tangent lines to the original parabolic curve but this is

geometry; I mean how is this useful in interpreting a realistic system, that is placed in a

thermostat like the test tube full of your chemical reactants and put it in that thermostat

with variable temperature facility? In order to do this connection, let us go and have a

look at;  before I  do that  let  us have a look at,  what is  meant  by a partial  Legendre

transformation?
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Now, a partial Legendre transformation is applicable; when your dependent variable y is

determined by more than one independent variables; as in this case y is a function of two

independent variables x 1 and x 2.

In that case, you will have to define two new independent variables; P 1 and P 2 which

are the partial  derivatives  of y with respect to  x 1,  keeping x 2 constant  and partial

derivative of y;  with respect to x 2, keeping x 1 constant.  In this  case the Legendre

transformation of y is going to be psi and given by y minus P 1; x 1 minus P 2; x 2. So,

as I  see that  if  you take this  very simple example,  you will  find that  this  curve; the

original curve that you had y equal to x 1 square; plus x 2 square with x 1 and x 2 as the

independent variables and y as the dependent variable; is now being transformed, x 1 is

replaced by P 1; x 2 is replaced by P 2 and in the new representation y has been replaced

by psi.

So, next question that we ask is; how do I relate this kind of old representation to the new

representation?
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So, when I discuss the application of Legendre transformation.

(Refer Slide Time: 12:15)

There is only one result from this mathematical treatment that I need to take care of very

carefully. Look at this, so when I carry out the Legendre transformation; I find that the

new dependent variable is nothing, but the old dependent variable minus a correction

term. Now what is this correction term? This correction term is obtained by multiplying

the old independent variable with the new independent variable. So, once you understand



this; the rest becomes fairly easy. Now, let us have try and think; what are the different

slopes that we know of when I am describing the internal energy?

Do you remember what the slopes are? Del U, del S that gives you T; if I am taking the

derivative keeping, the volume and number of particles constant. Similarly, minus P is

the slope of del U, del V; keeping S and N constant. Now, let us have a look at this

situation; in an isolated system, I had this representation S, V, N and the dependent on

these independent variables was the thermodynamic potential U. 

Let me carry out a simple Legendre transformation, where I am replacing V by p. Now

what is p? By definition; I know that p is the slope of U; is a derivative of U with respect

to V. Therefore, it is like x being replaced by the corresponding derivative; the capital P,

if I do that then what will happen to U? The Legendre transform of u with respect to

minus p will be; what is the old dependent variable? That is U. What is the correction

term? So, you will have a negative here, then I have a correction term. 

So, this is the correction term; what is that correction term? The old independent variable

multiplied  by  the  new  independent  variable.  So,  what  was  your  old  independent

variable? That was V, so I have put in V here. What is your new independent variable?

Although, I write p here, the actual new independent variable is minus p. So, I put minus

p here and both the negative signs make this as a positive. 

And therefore, I find that if I represent the macroscopic state of the system as S, V, N;

which is an isolated system and I try to use this representation in another case, where V

has been replaced by p; then whatever role U was playing in this case, will be played by

H; that is the enthalpy of the system. Now, let us next have a look at the situation where I

am trying to construct the thermodynamic potential of a system that is in contact with a

thermal reservoir.

So, once again I start with an isolated system I understand that there the thermodynamic

potential is U. Now I want to look at the situation where the system variables are T, V

and  N.  So,  what  is  the  difference  between  this  representation  and  this  one?  I  have

replaced S by T; how are S and T related? T is the slope of U with respect to S.

Therefore, how will the thermodynamic potential change? So, U will now be replaced by

F. Now what is F? F is the old dependent variable minus some correction term. So, what



is  this  correction  term?  The  old  independent  variable;  which  is  S  and  the  new

independent variable, which is T and this is how; you see that we arrive at the definition

of the thermodynamic potential  S, which we already have seen to be playing a very

important role in deciding the direction of a spontaneous change in state; as the system is

maintained under isothermal condition.

(Refer Slide Time: 17:28)

Now, of course, I should be able to generalize this in the case of the isothermal isobaric

condition.  So,  once again as I  start  from the  isolated  system and I  try  to  derive  the

representation of a system that is connected to a thermal, as well as a pressure reservoir. I

see  that  the  representation  of  the  system  is  now  T,  p,  N  in  terms  of  these  three

independent  variables.  And the  change over  that  I  see from here is  that  S has  been

replaced by T, V has been replaced by actually minus p and N remains constant.

Then we ask the question that then what would be the corresponding thermodynamic

potential? So, now instead of U; I will be having the old dependent variable U, which is

this;  then  correction  terms  which  appear  from the  combination  of  T and  S  and  the

combination of p and V; minus p and V. So, in total what I get is the thermodynamic

potential for this representation must be U minus T S plus p V. 

So, this actually shows that knowing a little  bit  of mathematics is not harmful at  all

because  that  gives  you  some  idea  about  why  and  how  we  arrive  at  those  specific

definitions of F, H and G.
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Let us now have a look at how these thermodynamic potentials can be used to explain in

particular, the condition of equilibrium when a system is in contact with a reservoir.

(Refer Slide Time: 19:18)

Now for the sake of simplicity, I am going to focus on a system in equilibrium with a

thermal reservoir. So, this is a situation I have in mind; where I have a system, this has

been kept in contact with a thermal reservoir so that it is surrounded by our diathermal

rigid, but impermeable wall and there is energy exchanged between the system and the



reservoir in the form of heat. I also assume that the reservoir is much much larger than

the system.

And  therefore,  whatever  properties  are  fluctuating  in  the  reservoir  because  of  the

exchange between the system and itself; these are going to be nominal and we can safely

neglect them. And also in whatever I do to the system, I understand the system is going

to be having a temperature that is equal to the temperature of the reservoir.

(Refer Slide Time: 20:24)

Now, once  I  have  this  situation;  I  understand that  the  composite  of  system and the

reservoir this; is an isolated system. As a result, I can really easily say that if S is the

entropy  of  the  system  and  S  res  is  the  entropy  of  the  reservoir,  since  system  plus

reservoir is isolated S plus S res; under the given condition should be a maximum. As a

result, any small perturbation to the system we will see that d of this summation to be

equal to 0; which means that in as long as the system remains an equilibrium, I must

have this condition satisfied that d S is equal to the negative of d of S res.

Similarly, if I look at what happens to this quantity that is a second order differential of S

plus S res? I see that this must be d 2 S plus d 2 S res, but I have already said that; any

fluctuation in the reservoir property is negligibly small therefore, the second derivative

can be safely assumed to be nearly 0. Therefore, this quantity is equal to d 2 S and for an

isolated system at equilibrium; the d 2 S must be a maximum, as a result it must be less

than 0.



Now, once I understand this then I also must realize that under such condition U plus U

res; that also be a constant, therefore, any small perturbation that still retains the system

in equilibrium must satisfy the fact the d of this summation, this is going to be equal to 0.

And d 2 of this summation, which is essentially d 2 of the internal energy of the system

should be greater than 0; why is that so? 

That is because when an isolated system is at equilibrium its entropy is constant at a

maximum value and its internal energy is constant at a minimum value under the given

experimental conditions.
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Once this is understood, we are next going to modify the system a little bit. So, instead of

having a simple system; now I have a system which has two compartments, 1 and 2. But

it is still in thermal contact with the reservoir and the system and the reservoir, they are

constituting a composite set up which is isolated in nature. Now let me then try and

explain that whatever I was thinking about as the internal energy of the system is now U

1 plus U 2. 

So, what is U 1? U 1 is the internal energy of the compartment 1; U 2 is the internal

energy of  the  compartment  2.  Therefore,  for  any even state  of  the  system;  the  total

internal energy of the system is going to be the sum of these two quantities. Similarly, S

which is also an extensive quantity will be a summation of S 1; that is the entropy of

compartment 1, plus entropy of compartment 2. 



So following the assumption regarding the system plus reservoir given me an isolated

setup, now I can write down the equations that I wrote in the previous slide as; I must be

having differential of this quantity equal to 0 and the double differential of U 1 plus U 2

will greater than 0. Similarly d S that is now a differential of S 1 plus S 2; must be equal

to negative of the reservoir entropy; differential change in this reservoir entropy and this

change is a maximum.

(Refer Slide Time: 25:03)

Now, I am going to introduce a small perturbation; which is a small perturbation in the

sense that it is going to allow an infinitesimal exchange of heat between the compartment

1 and the compartment 2. So, what is going to be the result of this? I will  have the

internal energy of compartment 1 changing over to sum U 1 plus d U 1. Similarly, U 2

will change to U 2 plus d U 2; correspondingly I will have the internal energy of the

system if initially it was U, now it will be U plus d U, where what is d U? d u; obviously,

is d U 1 plus d U 2.

This is a fairly simple and then at the same time the system is exchanging heat with the

compartment 1 as well as compartment 2. And therefore, U res will change from to this

value, U res plus d U res. But we know that for any system which is undergoing a change

in state; d U can be equated to TdS minus pdV by the combination of the first law and

the second law of thermodynamics. 



So, this is exactly what I have written over here and once you know this, look back at the

kind of process that you have; if  I  have some material  in the compartment  1.  it  has

undergone a  change in  state  by exchanging energy with  this,  material  in  the  second

compartment. And let us say that; that has given rise to d U, now looking at this change

what do you think is going to contribute to the change in internal energy in compartment

1? Not pdV; because it did not exchange volume either with compartment two or with

the reservoir.

Therefore,  whatever change in internal energy that I will see in compartment 1 or in

compartment 2 or for that matter in the reservoir is entirely going to be attributed to this

term and therefore, I can very easily write that d U 1; should be T 1; d S 1, d U 2 would

be T 2; d S 2. And correspondingly the net differential change in internal energy of the

system, it is going to be T 1; d S 1 plus d 2; d S 2 and d U res. The change in the

reservoir internal energy is going to be given by T res into d S res.

(Refer Slide Time: 28:06)

Once I have this then let me go back and see the consequence of these results on the fact

that the system plus the reservoir is an isolated setup. If we look back at this, now this

condition is translated into the fact that I must be having this combination equal to 0; if

the system even after this small infinitesimal change in state is still at equilibrium, so that

is equilibrium condition that I am talking about.



Once I understand that, I also understand that my experimental situation is such that T 1

is equal to T 2; equal to T res and equal to some constant value of T. So, if I incorporate

this into this expression, then the condition of equilibrium turns out to be T into d S 1; T

into d S 2, plus T into d S res is equal to 0. What does it imply? It implies that what is

this quantity? That is nothing, but d U; so d U plus T into d S res is equal to 0.

But we already know that d S res is equal to minus d S and therefore, the condition of

equilibrium now boils down to this. So, d U plus T into d S res can be written as a

differential of this quantity U minus T S. And the I understand that when if the system

even  on  this  infinitesimal  perturbation,  still  remains  an  equilibrium;  this  quantity  U

minus TS is going to attain an extremum. Now the question is; is this a minimum or a

maximum;  in  order  to  understand  that,  we  will  have  a  look  at  the  second  order

differential d 2 of U minus T S. Now if I evaluate this, I find that it depends on d 2 U and

d 2 S.

But already I know the signs of this; now d 2 U because the system plus the reservoir is

isolated then this quantity is greater than 0 and this quantity is less than 0. And therefore,

since temperature is always a positive quantity; I must be having that this combination

must be greater than 0. So, now we have identified this quantity U minus T S; which is

the function of system properties only. 

And under the condition that their system maintains a constancy of temperature with a

reservoir, I  find that this  combination U minus T S is  going to reach a minimum at

equilibrium. 
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And therefore, what we find is that; if a system is in equilibrium with a thermal reservoir

and if the temperature is uniform all throughout the system and the reservoir, then if I

define the Helmholtz  free energy as F which is  U minus T S,  then the condition  of

equilibrium is F should be a minimum. So, this is the demonstration of the minimization

of Helmholtz free energy, when a system is at equilibrium.

(Refer Slide Time: 31:46)

In general, one can say that if a system is in contact with a reservoir; then first we have

already seen that it  can spontaneously undergo a change in state in the direction that



decreases its thermodynamic potential. And now we have shown that if the system is at

now finally, at equilibrium; we can perturb it to a very small degree by allowing one part

of  the system to exchange;  for  example,  heat  with another  part  of  the system while

maintaining the constancy of temperature.

And then I find that even such small infinitesimal changes will result in the minimization

of the Helmholtz free energy or in the case of isothermal condition or the appropriate

thermodynamic potential, if the system still remains in equilibrium.

(Refer Slide Time: 32:48)

So,  now  the  conclusion  is  as  follows  in  an  isolated  system  I  understand  that  the

macroscopic state of the system that is at a length scale of about 1 meter, where I can see

the system with my naked eye; the equilibrium state is given can be defined in terms of

the  entropy;  volume and a number of  particles.  And the energy function  which is  a

natural function of these three variables is U and there is no reservoir.

As a result of which, you see that the condition of equilibrium is described entirely in

terms of system property and it says that; if the system undergoes a change in state; it

will proceed in the direction of decreasing U and at the final equilibrium state, the U will

be  minimized.  Similarly,  for  the  system  in  contact  with  a  barostat;  this  is  the

representation  of the thermodynamic or the macro state of the system. And this  is  a

thermodynamic potential which has S, p, N as its natural variables and here you define



the equilibrium in terms of reservoir properties by saying that the system pressure must

be equal the reservoir pressure and this should lead to minimization of enthalpy.
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Finally, when you have a system and thermostat; the thermodynamic potential is F and

the  condition  of  equilibrium  entirely  in  terms  of  system  properties  is  given  by  the

minimization of F; under the condition that the temperature of the system is equal to the

temperature of the reservoir. And similarly, we can extend the same consideration which

I have not proved here; that if the system is in equilibrium with the thermostat and the

barostat,  then  you define  the  macro  state  of  the  system by defining  the  temperature

pressure and the number of particles.

And then it  is a minimization of the Gibbs free energy that defines the condition of

equilibrium under the situation, where the system temperature is equal to the reservoir

temperature and the system pressure is equal to the reservoir pressure.
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So, finally, this is the summary of what we have achieved while discussing the principles

of thermodynamics. We have learnt that any thermodynamic system can be completely

defined in an equilibrium state; in terms of three variables. And these three variables will

very much depend on; the kind of system you are looking at, whether it is an isolated

system or it is a system in contact with a thermal reservoir or you are talking in terms of

a system that is being maintained at a constant temperature, constant pressure and it is a

closed system.

We also  understood  that  energy can  be  harnessed  when  the  system is  undergoing  a

change in state. And this change in state is spontaneous in the direction that reduces the

thermodynamic  potential  of  the  system.  So,  you  see  that  respective  of  which

experimental condition you are looking at; you basically have one generalized principle

for the direction of a spontaneous change in state.

And finally, when the equilibrium is reached you find that there will be a minimization

of the thermodynamic potential; under the condition that some intensive property of the

system is equal to that corresponding property of the reservoir. I would like to end my

lecture today by showing you something that is very interesting.
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We started off with the internal energy, now we have the internal energy minus T into S

and this  is  F. So,  when you are allowing the system to maintain  itself  at  a constant

temperature; you see that a part of the internal energy is becoming unavailable, why is

that so? This is the amount that this system is going to require; to maintain itself at the

constant temperature T. And therefore, it is unavailable for doing external work.

If you are having this temperature constant pressure condition, in that case G is equal to

U plus p V minus T S. So, while maintaining itself at a constant pressure; there is an

additional amount of energy available to the system, which adds up to U, but again you

lose a part of it.

Since the system is trying to maintain itself in at the condition of constant temperature.

And that is simply the reason why there are so many energy functions when you deal

with  thermodynamics.  And  I  hope  now  you  understand  that  given  an  experimental

situation,  how  you  will  choose  the  different  independent  variables  to  describe  its

equilibrium state? And finally, will you be using pressure and volume together? No, that

is because we now have a concept of conjugate variables.

So, what do I mean by conjugate variables? As you have seen that I either use entropy or

use T; I either use V or use p. Similarly, if you have an open system; you either have N or

you have mu representing the independent variables describing the equilibrium state of

the  system.  And  therefore,  S  and  T are  conjugate  variables;  V and  P are  conjugate



variables and N and mu are conjugate variables and either one of the pair is used to

describe the equilibrium state of the system.

Thank you.


