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Welcome  in  today’s  lecture  we  are  going  to  talk  about  the  application  of  classical

statistical mechanics to understand the structure of simple liquids. So, the, we will start

by identifying the key elements in describing the liquid structure. Of course, very name

suggests that we are not really used to having a concept of liquid structure. When we

draw the molecular structure of any sample we think about the solids for example, where

we have a regular periodic array of atoms or molecules arranged such that; it does not

matter  which  length scale  you are looking at  you are going to  be having a  periodic

repetition of the same structural  motif,  but in the liquids such structural  motif  is  not

expected to be there.

(Refer Slide Time: 01:15)

And therefore, I shall start by looking at the experimental determination of what I mean

by  liquid  structure,  what  kind  of  signature  does  the  underlying  liquid  structure  is

obtained when experimentally the structure is measured. And then I am going to talk

about the central idea the key concept in liquid structure; that is given in terms of radial

distribution function. And finally, I am going to use the radial distribution function to



show  you  that  the  structure  of  the  liquid  indeed  has  effect  on  the  thermodynamic

properties.

So, let us start by discussing the determination of liquid structure by X ray scattering. So,

as you may have encountered in your under studies on solid state chemistry that, X ray

scattering is usually used in the case of determination of structure in the case of solids,

but the same principle can be used in the determination of structure of liquids as well.

So, what is the basic set up?

(Refer Slide Time: 02:24)

The basic setup is as follows, you are going to use an incident radiation which in this

case  is  X ray  and let  us  say  that  the  incident  radiation  propagates  in  this  direction

characterized by the wave vector k naught.  And when this radiation impinges on the

sample then the X ray would interact with all the electrons present in the system and it

would be scattered. Some of the radiation will proceed in the original direction of the

incident radiation, but some of it will be scattered in different directions.

Now, if I want to know in which direction the radiation has been scattered, I will be use

the  concept  of  what  is  known  as  a  scattering  wave  vector,  which  is  given  by  this

difference vector between k naught and k 1. Now obviously, the scattering wave vector

depends on the scattering angle theta. So, basically if I go back and try to understand the

relationship between the scattering wave vector and the scattering angle, I find that due

to the interaction of the incident radiation in the with the electrons of the sample. There



is a phase difference between the scattered wave vector and the and the incident wave

vector, and this is given in terms of the scattering wave vector which is related to this

angle theta. And this relationship is given by k is dependent on k naught modulus of k

naught into sin of theta by 2. So basically, then the task is you go on collecting using a

moveable collector the scattered intensity at different values of theta. So, you move it in

the pathway of the scattered radiation and as a function of theta or as or equivalently as a

function of k, you find out what the scattered intensity of scattered radiation is.

Now, if I look back and try to understand the source of this scattering I understand that

the amplitude of scattered radiation will depend on theta and at every theta there will be

contributions coming from all the atoms present in the system. So, if I have capital N

atoms present in the system and if the sample is such that these atoms the scattering

pattern is not really dependent on and the scattering of the ith atom of the is independent

of the scattering from jth atom, then I can very easily write down that the total amplitude

of  scattering  at  angle  theta  that  will  depend  on  all  the  amplitudes  collected  from

scattering originating from the ith atom and sum them over all the N atoms, but I should

also remember that each atom has Z electrons,  where Z is the atomic number of the

atom.

And  therefore,  the  amplitude  of  scattered  irradiation  at  an  angle  theta  it  actually  is

obtaining contribution from all the Z electrons associated with each atom and I have N

such atoms. As a result, the total intensity of scattered radiation is going to be an average

over all these contributions. So, I can say that if I measure the intensity act different theta

I am equivalently talking about measuring the intensity at different wave vectors and that

can be related to the amplitude of the square of the amplitude of the scattered radiation at

that particular angle.



(Refer Slide Time: 06:37)

Now, how do I interpret this intensity I of k? In order to do that we talk about relating in

this this intensity at k, in terms of 2 factors the first factor as shown here is N I 1 and the

second factor is S of k. I am not going to discuss how I derive this because that would

require you to understand the classical and quantum theories of scattering. So, those who

are interested later on you can read this up, but for the purpose of today’s lecture I am

going to use this result from scattering theory and try to explain to you what we get as

the outcome of my experimental measurement of liquid structure.

Now, let us look at N I 1. If I have N atoms in my scattering sample then N I 1 is the

intensity expected from scattering by the electrons of capital N independent atoms. So, in

this case I 1 is the intensity of scattering obtained from 1 atom and if I have a total of N

such independent atoms. Then I will be having this total contribution coming from these

N independent atoms as N I 1. Now the second factor that I have is the S of k. So, this is

a factor which depends on k and this is known as the structure factor. So, what does the

structure factor tell us? It tells us that in the scattering pattern there is a deviation from

the ideal behavior where all the N atoms are independent of each other. 

The position of the ith atom does not depend on position of jth atom in the ideal case, but

in reality, there will be correlated to each other between the positions of different atoms.

So,  S  of  k  tells  us  about  the  deviation  from ideal  behavior  and  this  is  obtained  by

averaging over different positions of the atoms. And please remember that the X rays are



being scattered by all the Z electrons associated with each atom present in the sample

and therefore, this S of k contains an averaging over contributions from all electrons

originating from different atoms which whose positions are correlated with each other.

(Refer Slide Time: 09:18)

And therefore, I would say that the structure factor of the liquid tells us the extent of

correlation in positions of the atoms, but since I am measuring the S that is a structure

factor  in  the  wave  vector  space  that  is  S  of  k  therefore,  the  extent  of  positional

correlation is measured in the scattering experiment in the wave vector space. And if I

look at the exact expression for S of k this can be derived as you can see that here the S

of k depends on the positions of the different atoms present on the system. And this is a

Fourier transform of those functions of those positions.

Now, if I want to visualize where in the 3-dimensional space the different atoms are

located, what we have to do is; we will have to carry out a Fourier transformation of S of

k and if I do that that gives me what is known as the radial distribution function. So, the

radial distribution function is defined formally as the Fourier transformation of S of k so,

that  the  information  that  we had in  the  wave vector  space  is  now, converted  into  a

position correlation of the atoms in the wave vector space; which means that if I Fourier

transform S of k. I get how the positions of the different atoms present in the system are

described in relation to each other in the 3-dimensional Cartesian coordinate space for

example, where each atom is described in terms of it is Cartesian coordinate x y and z.
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And therefore, to summarize the experimental observation in the measurement of liquid

structure  this  is  what  we measure,  we measure  S  of  k  as  a  function  of  k  from the

scattering experiments.  And as you see that  there are signatures of correlation in the

wave vector space as given by the appearance of these peaks and different values of k in

S of k.

Now, if I Fourier transform this response in that case what I get is g of R. So, g of R tells

me that this is the deviation from an ideal gas like behavior in the structure of the liquid

and therefore,  here the peaks that  I  see here at  r  approximately  equal  to  sigma or  r

approximately equal to 2 sigma or 3 sigma etcetera. These are the positive deviations

from the ideal gas behavior saying that; if I have 2 molecule 2 atoms at roughly at a

distance of one point 1 or 1.2 sigma then their positions are highly correlated. And as you

see that these correlations become weaker and weaker as given by the height of the peaks

as we go for higher pair distances and then it goes to 1 when they are separated by a very

large distance which is the scenario of an ideal gas.

 (Refer Slide Time: 12:59)



So, in the next part of this lecture what I am going to do is I am going to talk about the

quantitative  description  of  the  liquid  structure  in  the  configuration  space,  where  I

explicitly discuss this correlation in the position coordinates of the constituent particles

of my sample liquid sample and with that I would like to introduce the concept of the

radial distribution function, which I showed to you in the previous slide as g of R. So, g

of R is a quantity that we can get from the experimental data, but the question that I am

asking now is, what is the kind of picture that we have associated with a microscopic

state of the liquid this is something like this
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So, here I am showing you a typical microscopic snapshot of a liquid sample at a very

high density. As you see that here each of these particles these their Vander Waal surfaces

as shown in this picture and they are really touching each other ok. They are very closely

packed, soft spheres which are packed into the given volume V at a given temperature

and a total number of particles is fixed.

If I had a low-density sample, you will see that there are lots of void spaces and although

some of them are touching each other. There are void spaces where no atoms are there

which are very close to each other. Now if I want to have a quantitative description of

microstates like this what I will do is, I will set up the laboratory fixed frame of reference

of coordinates like the xyz coordinates.

(Refer Slide Time: 14:55)

And  for  each  atom I  will  associate  with  it  a  3-dimensional  vector  giving  it  is  xyz

coordinates.  Now  then  using  the  standard  description  of  classical  mechanics  I  will

associate to a system having capital N particles in the canonical ensemble 3 N position

coordinates  and  3  and  momentum  coordinates  and  I  will  write  down  the  classical

Hamiltonian  in terms  of these position and momentum coordinates,  but a  interesting

point is a liquid is a an interacting system; therefore, I will have a non 0 contribution of

the potential energy which depends on the configuration or the position coordinates of all

the N atoms present in the system.



Now once we have this then we can say that if I assume that the potential energy arises

from pair wise interaction, then I can write that the total potential energy is the sum of all

type of pair interactions that are present between every possible distinct pairs present in

the sample.

Now, let us try and have a pictorial understanding of what I mean by the potential energy

being represented as pair wise interaction.

(Refer Slide Time: 16:13)

So, let us say that here I have a snapshot of my liquid sample, where these red balls are

the atoms of the liquid sample and they are labeled as 1 2 3 4 for our convenience; of

course,  if  you take a liquid sample like liquid argon all  these atoms are going to be

indistinguishable, but for our purpose of understanding I have labeled them as 1 2 3 4

and then I can actually write down all possible pairs i and j. And you can see very easily

that  there will  be 6 such pairs  and, in  this  case,  if  for every pair  I  can find out for

example, the distance between the 2 atoms which I call rij. So, if I consider 1 and 2. I am

measuring r 1 2 and the interaction in an energy potential energy between 1 and 2 is

given by u of r 1 2. And I can repeat this for all the 6 pairs possible and then I can write

down the total potential energy as a sum of these 6 paired interactions.
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And when I write down this kind of expression I can use a condensed notation, I can say

that I am summing over all u of r ij by summing over I going from 1 2 N minus 1 and j

going from i plus 1 to N. So, that is exactly if you put n equal to 4 here you will retrieve

this expression, but noting that rj I is equal to r ij it is also convenient to write that u r N

is a double summation like this, where I is not equal to j, but each of i and j will run from

1 to N. So, I am double counting 1 2 and 2 1. So, I will divide the sum by half in order to

avoid over counting.

(Refer Slide Time: 18:18)



Now, with  this  idea  in  mind  then  what  happens  is  one  can  think  of  the  different

microstates of the system by solving for example, the equation of motion which is given

here. And I find that for every degree of freedom there is an equation of motion say the

degree of freedom is x i and this is going to depend on f i where f i is the force acting on

the ith a degree of freedom or the ith particle here because of all other n minus 1particles

present in the system. Now what is f ij? F ij that is the force on the ith particle because of

the presence of some other particle j in the medium is related to the derivative of the pair

interaction u with respect to their separation ok.

(Refer Slide Time: 19:14)

So,  basically  then  in  the configuration  space we are trying to  develop a  quantitative

description of the disordered liquid structure, and this is done in terms of an equilibrium

distribution function in liquids knowing that I have at hand under a given condition of T

V N a very large number of microstates.
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Now at equilibrium we know that the probability of finding a set of N molecules in the

phase space within volume element which is given in terms of d r N d P N. That can be

very easily written down in terms of the e to the power of minus beta h, that is a full

Hamiltonian of the system and divided by the canonical partition function. So, in this

case what I have done is I have indicated by this P capital N, the probability density in

the phase space or the probability  associated with unit  volume in the phase space of

observing a state point characterized by certain values of r N and certain values of P N.

So,  when  we  talk  about  the  n  particle  distribution  function  at  equilibrium  in  the

configuration space.
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Then we are asking the question what is the probability density of finding a set of capital

N molecules at a given configuration, which is characterized by a set of coordinates like

r  1  r  2  r  3  etcetera  and I  am looking at  some volume element  infinitesimal  volume

element in the configuration space. And this can be obtained from the full phase space n

particle distribution function by integrating over the all the possible values of momenta

of the N particles. So, in this representation then what I would say is I have expressed the

probability density in the configuration space in terms of the probability.

(Refer Slide Time: 21:18)



Density in the phase space and then what I can further say that this probability density in

the  configuration  space  can  be  explicitly  written  up  using  the  expression  of  the

probability  density  in  the  phase  space.  And I  understand that  in  that  case  I  will  be

integrating  over  all  possible  momentum values  of  this  contribution  coming from the

Hamiltonian ok. 

Now if  that  happens I  can very easily  show that  this  is  going to be nothing but the

configuration dependent part unchanged, but this integration part separately coming out,

but if I use the definition of capital Q, we have already discussed this I can simply have it

separated  into  the  integration  over  the  momentum  part  and  then  the  configuration

integral. So, if I combine all these results what I find is that, the equilibrium in particle

distribution function is dependent  on e to the power of minus beta u divided by the

configuration integral.

(Refer Slide Time: 22:34)

And therefore, if I compared in the full phase space the equilibrium probability density

of  finding  a  set  of  N  molecules  at  a  given  configuration  is  dependent  on  the  total

Hamiltonian and it is divided by normalized by the canonical partition function.

On  the  other  hand,  in  the  configuration  space,  the  associated  probability  density  is

dependent only on the potential energy and it is normalized by the configuration integral.

And now you understand the relevance of the name configuration integral. Now what is

the outcome?



(Refer Slide Time: 23:11)

The outcome of this definition is if I want to calculate some ensemble average for any

property A if I am using the full phase space in that case I will be using the full phase

space  probability  density, but  in  the  configuration  space  what  I  will  be  using  is  the

configuration space probability density.

(Refer Slide Time: 23:37)

Now using this idea, we are now going to talk about a small n part number of particles

viewed together to obtain a quantitative description of the liquid structure.



Now, what is small n? Small n is going to be a number like 1 2 or 3, which means that

for  a  real  sample this  small  n  is  much much less than the total  number of  particles

present.

(Refer Slide Time: 24:05)

So, how do I define this n particle distribution function this is the probability density of

finding a set of n identical particles out of a total of capital N identical ones at some

given positions ok. And this  by definition is related to this equilibrium configuration

space probability density multiplied by the number of ways in which you can choose

small n particles up from an set of capital N. So, let me remind you that we have already

said that this P N is nothing but d r n plus 1 to d r N then e to the power of minus beta U

and r N by Z T V N. 

So, this is the probability of observing once you have a set of small n particles chosen

out of a collection of capital N, then this is the probability of observing those n particles

at a given position in configuration space irrespective of where the other capital N minus

small n particles are located. So, this is taken care of by integrating over the position of

all other particles that are not being considered.
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So, this brings us to the concept of ok. Let us think about small n equal to 1. So that is

supposed to be the easiest case. So, what is the probability of finding a single particle in

the small volume element in the configuration space, this is given by rho 1 r dr, but this

is a probability distribution function therefore, I would require that if I normalize it I am

talking about finding single particles in small small volume elements if I integrate over

the  entire  space;  I  must  be  getting  the  total  number  of  particles  back.  Now  for  a

homogeneous fluid it does not matter which small volume element I am looking at; this

number should always be the same because it is homogeneous it does not depend on

which portion of the sample I am looking at rather this is going to be a constant.

Now, if I look at the normalization constant then I find that this means that this constant

is nothing but the total number of particles divided by V, which is the average number

density of the system ok. So, for a homogeneous fluid I find that the rho 1 r which is the

singular distribution function is nothing but the number density of the liquid.
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Now, if we think about the 2-particle distribution function, here I am talking about the

probability  density  of  finding 2 particles  simultaneously  at  the positions  r  1 and r  2

obeying the same conditions of temperature volume and number of particles. So, this is

the kind of picture that I have in mind. And this by definition is given by rho naught

square into g 2 multiplied by the associated volume element in the configuration space.

Now here I understand that this is the probability of finding a second molecule 2 within

this volume element that is shown in green here under the condition that there is a first

molecule present in the volume element the r 1.
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And now when I use this definition then I understand that I already have this particle 1

fixed at this position somewhere within this volume element.  And I am asking if the

position of a second particle is correlated to it is position. Now if these 2 particles are

uncorrelated they will behave as single particles, and their probabilities are going to be

given  by  the  individual  singlet  probability  distribution,  which  in  the  case  of  a

homogeneous system is nothing but rho naught square.

And then I would identify from this definition what exactly g 2 means. G 2 is actually is

telling me that this would be the deviation in the observed probability distribution of rho

2 due to the inter particle interaction between my particle 1 and particle 2.

(Refer Slide Time: 28:53)

Now, when I do this then for a homogeneous isotropic liquid it does not matter what

exactly the values of r 1 r 2s are rather it depends only on the difference between the 2

position vectors and rather the magnitude of the inter particle separation and then I can

use this expression to define formally what g of R or the radial distribution function is. G

of R says that this is the deviation from ideal be gas behavior when you have chosen to

any 2 particles from an assembly of capital N particles and then average over all possible

positions of the other capital N minus 2 particles using the probability of each of these

position other microstates weighed by the corresponding probability density.
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So, if I now try to interpret what this radial distribution function is.

(Refer Slide Time: 29:59)

Let us say that I this is a typical snapshot of my liquid sample. So, I have a monatomic

liquid comprised of these red balls representing each of the atoms in the medium. So,

what I do is let me tag this particular atom and then set up a circle in the 3 dimension it

would be a sphere of radius r. Then I also set up another sphere of radius r plus d r

having this original attacked particle and the center ok. So now, I what I have is I have a

thin spherical shell of width d r. And I what I will do is with the tact particle at the center



I am going to count the number of particles that have their center within this spherical

zone. So, in this picture I have 4 atoms that are present within this spherical zone and

when I have this tact particle at the origin

(Refer Slide Time: 31:08)

Now, when  I  take  other  structures  I  do  not  confine  myself  to  considering  a  single

structure,  but  I  look at  I  tagged all  other  particles  present  in the same structure and

calculate this number in our present within this spherical shell of thickness d r between

the sphere of our radius r and sphere of r plus d r. And I also average over all other

possible microscopic states that can be accessed either by molecular dynamics simulation

or by Monte Carlo simulation, and then I estimate g of R as the average number that

have got the where an r is the number of atoms who had their center within that spherical

shell of thickness d r. 

And  this  has  been  averaged  over  all  atoms  in  a  given  microscopic  state  and  then

averaged over all possible microscopic states under a given condition of T V and (Refer

Time: 32:13), since g of R is a deviation from ideality I would take a ratio of in our

average with n ideal r. And n ideal r is nothing but the singlet probability distribution

multiplied the by the volume of the spherical shell.
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So  now  what  we  say  is  well  once  we  know  the  definition  of  gr  then  what  is  the

probability  of finding a pair  of particles  at  a  separation r, within this  spherical  shell

bounded by these 2 spheres this must be given by 4 pi r square rho naught into g of R in

a  system where  the  particles  are  interacting.  Now once  again  I  am talking  about  a

distribution function a probability distribution function, which should be normalized and

if I integrate over all possible values of r; then I must retrieve N minus 1, why N minus

1? That is because I was counting the number of particles keeping one particle already at

the origin therefore, I must be retrieving N minus 1 when I do the normalization.
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So, for an ideal gas; obviously, if I put the potential energy equal to 0 I should be able to

retrieve the fact that g of R is equal to 1.

(Refer Slide Time: 33:33)

But if I look at the low-density fluids like a hard sphere fluid or a Lennard Jones fluid, I

see that in the case of g of R initially it is 0 because 2 hard sphere fluids cannot cross into

each others zone because here r is less than sigma, but beyond that this is equal to 1

because it behaves like an ideal gas.

Now, in the case of a Lennard Jones fluid you see the behavior because of the presence

of the attractive component is giving rise to a peak; it says because of the short range

attraction  present  in  the  Lennard  Jones  fluid  therefore,  in  the  range where  the  inter

particle separation is of the order of 1 to 1.5 sigma, sigma is the hard sphere diameter

then  they  will  be  held  close  together  and  therefore,  there  will  be  a  high  positional

correlation as given by this peak in g of R.
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So,  as  you see  that  if  you go on increasing  the  density  then  this  structure  goes  on

increasing; and starts showing signatures of not only a set of atoms in the first in the at

the distance r about sigma, but nearly about 2 sigmas and so on and so forth. And a lower

value of the peak height means that the atoms at r equal to small r equal to two sigma is

less correlated than those atoms present at r equal to sigma.
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So, basically then we can think of a first and second near neighbor shell  of attacked

particle. So, this is where I have a very low-density system and when I look at the thin



spherical shell around it I find that maybe there will be 1 particle in on an average within

this spherical whose center will fall within this spherical shell. So, that is the presence of

this particle on an average is indicated by this small peak in g of R.

But if I look at a highly dense system, then as you see that for my tanked particle which

is this one because of a higher density there will be more number of particles present in

the system within this spherical shell. And this is given by the higher height the greater

height of the first peak that I see at a distance of the inter particle separation small are

nearly about sigma. And then if I look at the second spherical shell still I will be able to

find more and more  particles  because  it  is  a  dense system and finally, at  very large

distances the correlation goes to one which is the ideal gas limit.
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And  the  use  of  ideal  distribution  function  is  to  interpret  the  structure  of  liquid  in

comparison to the solid state. This is a typical g of R for the solid-state structure, as you

see all the peaks here they are very sharp and they have great heights that is because in

the case of solids these atoms cannot move from their mean equilibrium position very

much and you always have a certain number of atoms from a given distance, but in the

liquids the atoms have translational motion. And therefore, not only the peaks become

wider because of the translational degree of freedom they are less correlated and less

structured than the solid therefore, liquids are ordered structures at short range, but it is

not ordered like solid at the long range.
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And if you just go ahead and look at different types of liquids.

 (Refer Slide Time: 37:33)

In the case for example, the Lennard Jones liquid you can see that the appearance of the

structure depends on the density that is which thermodynamic state that you are in.
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Or it will depend on the how attractive the system is for a given density. For example, if

you have at a given density a low attraction the structure is less and, but you have a

higher attraction, you see that the positional correlation between the particles in the first

and the second neighbor shells are much, much greater.
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And finally, I can also find out the coordination number from the g of R.
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And from the concept of g of r, one can very easily find out whether you have a buildup

of  neighboring  particles  around a  center,  a  central  particle  or  a  buildup lowering  of

number of particles on an average around attacked particle. So, here as you see that these

peaks positive peaks are appearing at certain distances, but it is negative it is because that

each molecule is a hard sphere like at short range and therefore, these negative peaks are

associated with the excluded volume associated with each neighbor in every neighboring

shell.
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And finally, if I know the potential energy of a system I can express the internal energy

and the pressure in terms of g of r. I am not asking you to work this out rather I am trying



to demonstrate here that the knowledge of the radial distribution function and the pair

interaction, gives you a handle to explain how the underlying structure and interaction

can dictate the thermodynamic properties of a liquid.
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So, in conclusion what I would say is I have a radial distribution function as a crucial

link between the microscopic interactions and the liquid structure. So, whatever we do

we end up with getting the g of R; g of r can be determined from experiments through

the Fourier transformation of the structure factor, and you can also have a model of the

pair potential which you can use in theoretical or computational simulation studies to

find g of r. And therefore, once you do that even for a disordered liquid phase you can

find out what the structure is.

Thank you.


