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Welcome  today  we are  going  to  discuss  the  classical  statistical  mechanics  and  it  is

application  to  ideal  and non-ideal  systems,  for  the  ideal  systems we are  specifically

going to discuss the case of an ideal gas, where the ideal gas is comprised of n number of

non-interacting particles which may be atoms or molecules, but we are going to model

Them as classical particles. Classical structures less particles looking like a billiard ball

and then in the second part of my lecture we are going to talk about the non-ideal system

where the interaction between these constituent particles of the gas cannot be neglected.

(Refer Slide Time: 01:09)

So, let us start with the discussion of classical ideal gases where as we already know; that

the  well-known experimental  result  gives  us  the  pressure of  the gas  in  terms  of  the

temperature and the volume at which this gas is present. And in this case the gas is

assumed  to  be  comprised  of  capital  N  particles  which  are  the  either  the  atoms  or

molecules depending on what the gas are, but in the classical description all the particles

are being assumed to be a spherical structure less particle. And the aim of our discussion

here is starting from the principles of classical molecular thermodynamics can we derive



the ideal gas equation and, in this process, can we try to understand what is the molecular

origin of this kind of an expression or the relationship between pressure temperature and

volume of a classical ideal gas. 

So, when we adopt the language of classical statistical mechanics so; obviously, we start

by defining the macro state of the system. I will continue the discussion in the canonical

ensemble where we assume that at the macroscopic level the system is present at a given

temperature, volume and number of particles.

(Refer Slide Time: 02:27)

Accordingly,  the  microstates  are  given  in  terms  of  the  position  coordinates  and  the

momentum coordinates of the capital N particles

Now, here I have used this shorthand notation as I have introduced in the last lecture,

which actually is corresponding to capital n 3 dimensional vectors given like this. Now

each vector is corresponding to a 3-dimensional position vector. So, we are looking into

the microscopic state for a system where each particle is present in 3 dimension and

therefore, it is coordinate has 3 components like the x coordinate, y coordinate and the z

coordinate. 

Accordingly, for each particle I will have one momentum vector which is giving me the

x  y  and  z  components.  So,  there  are  3  numbers  associated  with  each  momentum

coordinate for each particle and therefore, the microstate together is described in terms of



6 n numbers. And with this idea in mind then what we do is this is a typical visualization

of the microscopic state of the system, where I have highlighted only a few of these

structure less balls that represent my constituent atom or molecule. 

So, these atoms or molecules they do not know that the others exist. Each of them is free

to move around in this box which is having a volume V and the total number of these

particles is constant and, in this system, that the system is capable of exchanging thermal

energy  with  the  surrounding  and  therefore,  it  is  in  thermal  equilibrium  with  this

thermostat; maintaining the temperature of the system at a given value t. 

So,  for  this  particular  description  we have  adopted  as  I  have  mentioned  already  the

notation that for the ith particle the position coordinate is associated with 3 numbers x, y

and z. X i, y i and z i representing the x y and z coordinate respectively of the ith particle.

Similarly, p i is a collection of 3 numbers px i py i and pz i for the momentum the for the

components of the 3 dimensional momentum p i.

So, under such condition if it so happens that I am talking about an ideal gas, I can write

down the classical Hamiltonian and this classical Hamiltonian is going to be like this as

each  of  the  particles  are  independent  of  each  other  there  is  no  potential  energy  of

interaction  between  the  different  particles.  And  therefore,  the  overall  Hamiltonian  is

going to be comprised of the individual Hamiltonians of the of each particle. Now each

particle is nothing but a structure less ball. 

As  a  result,  in  the  Hamiltonian  there  is  only  one  term for  each  particle  that  is  the

momentum term each momentum term once again is going to have contributions from

the 3 components px py and pz. Accordingly, we can write down the Hamiltonian of the

system  which  is  a  function  of  all  the  3  N  position  coordinates  and  3  N  momenta

coordinates as a summation over these momentum terms. And divide it by 1 by 2 m,

where m is the mass of each constituent particle now once we understand this then.
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Basically, we can go ahead and write down the canonical partition function for the N

particles. So, that is by definition given by this. I would like to remind you here that this

is  the  generalized  expression  where  in  order  to  have  the  correct  expression  correct

derivation we have introduced this factor involving in the Plancks constant. So, that I

have no problem in going to the limit where the quantum effects are important and this

term N factorial  takes care of the fact that I have capital  N identical particles  in the

system

So, one we understand this then basically we can write down here the explicit form of

what I have written by dv. So, dv is in a shorthand notation given by this volume element

in there this is a infinitesimal volume element in the 6 n dimensional phase space. And if

I write them down explicitly it contains dx I dy idz I this is for the position coordinates

of the ith particle and d px i dp y i and the pz i these are the momentum coordinates of

the ith particle. 

And I have 6 such terms appearing for each of the N particles. So, as a whole these is this

integration is a 6 N dimensional integration over the phase space of the system. Now

once I understand this then let us go ahead and try to see how the canonical partition

function would look like for an ideal gas, where I have only 2 particles. So, capital N is

equal to 2.
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So, here what I have done is I have explicitly put in the contribution coming from the

Hamiltonian of each of the particles. And written out the phase space integration over the

6 into 2 that is, 12-dimensional phase space. Now the first term that you see here that is

involving the particle 1 and this is integration over all possible values of momentum of

particle 1 and the integrand contains e to the power of minus beta p square by 2 m, where

I have one contribution coming from the x component another contribution coming from

the y component and the third contribution coming from the z component. 

For the particle 1 there is another term here over it is x y and z coordinates, but the

integrand is nothing but 1; and that is because what you had in the Hamiltonian was term

dependent  only on px py pz and there was no term dependent  on x 1 y 1 z 1. And

therefore, here the integrand is 1 and together as I see that I have these 2 integrations

corresponding to my particle number 1.

Now, similarly I have written out the expression for the integration corresponding to the

particle  number  2.  So,  as  I  see  because  of  the  independent  nature  of  momentum of

particle  1  and particle  2,  I  have 2 independent  contributions.  So,  I  can simplify  and

rewrite this canonical partition function for n equal to 2 in the following manner.
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I have this 1 by 2 factorial term to take care of the fact that I have two identical particles.

Now I have written out one term that is shown here that depends only on the particle 1

and here I have written out another term which depends only on the particle 2, right? So,

what I understand is if I have 2 particles which are not interacting with each other, then

the  overall  canonical  partition  function  is  going  to  have  one  contribution  dependent

entirely on the coordinates and momenta of particle 1. 

And another set which depends only on the position and the momentum coordinates of

the particle 2. As a result what I can do is, I can very easily write down that the entire Q

T V N is going to be given by q square divided by 2 factorial  where small q is this

integration term for any given particle.

And now, as you can see that in state in addition to these integrals I have included here

this term 1 by h cube. So, that is because for every degree of freedom I would like to

have the correct derivation of a quantum mechanical analog, as a result for every particle

I  will  pre-multiply  by 1 by h cube.  So,  that  my normalization  constant  even in  the

quantum limit is correct.
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So, noting all these therefore, I can now very easily say that yes; this is the generalized

expression  for  the  canonical  partition  function  for  N  particles  in  the  where  the

Hamiltonian depends on the position and the momentum coordinates of all the capital N

particles. We demonstrated how it looks like for the very simple case where my system is

comprised of 2 identical non-interacting particles. 

So now, if I try to write down what capital Q is for any N if your system is comprised of

capital N identical non-interacting classical particles then we can say that Q T V N is

going to be given by 1 by N factorial to take care of the fact that all the particles are

identical. And then small q to the power of n this part which tells us that what happens if

I have independent contributions from each of the capital N particles

Now if I write down then for capital N particles, what happens what is the expression for

small q this is what I will get. So, all I have done is I have written out for any general

particle  the  single  particle  canonical  partition  function  which  by  definition  is  an

integration over all possible the phase space momentum components of that particle px

py and pz. 

And also, integration over dx dy and dz; in the case of a classical ideal gas the integrand

dependent on x y z is equal to one while the integrand dependent on px py pz is given by

e to the power of minus beta into the kinetic energy term. And therefore, what I can

argue is I can now understand that if I do this integration, what are the values to which x

y and z can vary? Of course, if my integrand is 1 this is nothing but the integrated value



that  I  have  the  value  of  the  integral  is  nothing  but  the  volume of  the  system.  And

therefore, I can take the volume out and write small q as V by h cubed and I am left with

the momentum integration as written out explicitly in terms of px py and pz.

(Refer Slide Time: 15:38)

And what we do next is we do some further simplification and this simplification is that;

I  split  each  of  the  exponential  functions  and  right  this  momentum  integral  as  3

independent  integrations.  The first  one being this  one that  is  integration  over  the px

values the second one is the integration involving the py values and the third one is

involving the integration over the pz values. Now as you understand this px py p z is the

dummy indices, right? 

As a result, I can say that all these 3 integrations are actually the same integrations and

therefore, I should be able to write that small q is nothing but this V by h cubed into this

integration it is value raised to the power of 3 because I have 3 identical integrals being

that are being multiplied together. So, once I know this then I can go back and try to see

what kind of integration do I have here. I would like to remind you that we have seen

such  integrations  before  and  this  integration  is  of  the  form where  you  have  as  the

integrand e to the power of minus alpha x s square. And we know that this integral when

integrated from minus infinity to plus infinity values of x gives me root over of pi by

alpha.



Now, in this case I understand what is my alpha, alpha is equal to this quantity therefore,

I can actually estimate this integration and find that my small q is going to be given by

an expression like this now; obviously, this combination of terms is familiar and that is

exactly what we have used here. We have written out small q as capital V divided by

lambda q where capital lambda is the thermal (Refer Time: 17:56) wavelength. And it is

defined  in  terms  of  the  plancks  constant  h  and  it  is  related  to  the  mass  of  every

constituent particle of the system and it is also dependent on the temperature at which the

gases present.

Now, as you can see that we have achieved something spectacular. We are talking about a

very large number of particles and we found that capital Q that is a 6 N dimensional

integral. And we could simplify this entire expression here by saying that for an ideal gas

system capital Q can be reduced to small q to the power of N by N factorial, where small

q is  nothing but  a  3-dimensional  integral.  And when we evaluate  this  3-dimensional

integral  because of  the  simplicity  of  the  system that  I  have an analytical  expression

regarding  the  single  particle  canonical  function  canonical  partition  function  can  be

obtained. 

Therefore, if I know small q I can go back use this expression and find out capital Q and

this tells me very simply that; now that I know the canonical partition function for these

N particles I should be able to work on the thermodynamics of a system comprised of

capital N identical non-interacting classical particles, and see if I can reproduce known

experimental results on the ideal gases. So, that is what we are going to examine next.
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So, this is the result  that I am going to start from and let  me start  from the internal

energy. So, once again this is a quick reminder that the internal energy of the system is

related to the derivative of ln Q with respect to temperature keeping volume and the

number of particles constant. Now if I use this expression of Q, I can very easily write

down that ln Q is comprised of these terms, where I have assumed that capital N is a very

large number like the avogadro number and therefore, I can very easily utilize the (Refer

Time: 20:27) approximation. 

And now as you see that I am interested in the temperature derivative of ln Q under the

condition where the volume and the number of particles are constant. And therefore, I

understand that in this expression there is only one term which has any dependence on

temperature and that is, through the dependence of temperature of the thermal (Refer

Time: 20:52) wavelength lambda and therefore, if I want to find out del ln Q del T under

the condition of constant volume and number of particles I am essentially going to look

at  minus  3  N into  del  del  T of  ln  lambda  keeping volume and number  of  particles

constant.

Now, if I look back at the explicit temperature dependence of lambda on temperature it is

something like this, where a is a constant when v and n are held constant therefore, I can

say what is del lambda del T is under such conditions that turns out to be minus lambda

by 2 T. Now if I bring this lambda to the left-hand side what shall I get I will have 1 by



lambda del lambda del T and that is nothing but del ln lambda del T keeping volume and

number of particles constant. Therefore, this quantity turns out to be minus 1by 2T. So,

the mathematics is simple and now I am going to combine these 2 relationships first del

ln Q is related to del del T of l n lambda under such condition; and del del T of r ln

lambda is given by minus 1 by t. I combine these 2 equations and what I get is I end up

determining del del T of ln Q in in terms of N and T. 

And when I  use  this  expression  and  put  it  back here  what  I  get  is  u  is  kbt  square

multiplied by this quantity. So, that is 3 N by 2T and that tells me that sure what I have

obtained is that the internal energy of the system comprised of capital N structure less

classical  particles  that  are  not  interacting  with  each  other  that  is,  capital  N  k  b  T

multiplied by 3 by 2, right?

And therefore, what I understand here is that the internal energy is comprised entirely of

the kinetic energy of each of these structure less classical particles present in the system.

They are moving about in the box at a temperature T, and it has each particle has 3

degrees of freedom in the x y and axis. So, each degree of freedom contributes half kt

energy to the overall internal energy. 

So, capital N such particles contribute 3 N by 2kT total amount of energy to the internal

energy of the system. And this once again is what we have known as the result from the

equipartition theorem. And when we were working with the explicit structure this is the

term  that  came  from  the  translational  motion  of  each  of  the  center  of  mass  at  a

temperature  T  within  the  volume  V. and  I  had  capital  N  identical  non-interacting

particles.

Now, the next thing is we will go back and examine what happens to the pressure.
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So, once again very quickly let us remind ourselves that pressure is related to the del del

V of lnQ. And if I look at l n Q that is only one term that explicitly depends on volume.

So, keeping temperature a number of particle constant all other terms here are going to

be constants of volume therefore, I can very easily write down that p is equal to N kbT

this N going out as a constant, then del del V of ln V under the condition of constant

temperature and number of particles and this is something that you can very easily do,

and find out that the pressure is nothing but what we have learned from our experimental

data.

So now we have been  able  to  combine  many  different  approaches  that  approach  of

kinetic theory of gases, the approach where we attached the explicit microscopic states of

the molecules or atoms; that are constituting the ideal gas and here. I have represented

the particles of the gas just as structuralist classical balls. In all these cases what I find is

the system comprised of this capital N identical known and interacting particles will have

energy that is equal to 3 N by 2k T. And the pressure is entirely from the collision of

these structuralist particles with the walls of the container and while doing so it does not

really know that other particles are exist in the system. And therefore, it is as if the entire

volume is available to the system and you get the ideal gas equation.

So  now, that  we  have  shown  that  the  ideal  gas  equation  is  actually  related  to  the

description of the system over all possible microscopic states and that is an average from



all possible microscopic states; taking into consideration the translational motion of the

molecules only, but interestingly what happens is in the real world we have not only in

the ideal gases, but also the real non-ideal behavior.

(Refer Slide Time: 27:00)

And this such non-ideal behavior is generally represented in terms of the compressibility

factor, which is defined here in terms of beta p by rho. So, rho is the number density. So,

what happens is if I plot this compressibility factor as a function of pressure this is some

reduced pressure in certain scale, then it is possible to show that z c must be equal to 1

for an ideal gas. So, that is the outcome of the ideal gas equation, but for a real system

we do see that there are market deviations from this constant behavior. As you see that at

different  temperatures  the compressibility  value will  show you many different  values

which are rather different from the ideal gas value of unity.

Now, whatever we have done so far did not take into account the interaction between the

particles  constituting  the  gaseous  system.  So,  in  the  next  lecture  let  us  take  up that

problem and try to understand, how we can introduce the concept of interaction between

the different particles in a gas in a real gas and explain why the equation of state should

be an equation like this, where in addition to the ideal gas term. I will have additional

terms that are expected to be reflecting directly the effect of underlying intermolecular

interaction.

Thank you.


