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Welcome  back.  we  will  continue  our  discussion  on  the  application  of  molecular

thermodynamics principles to the understanding of specific heat of solids and this is the

second part of our discussion. 

(Refer Slide Time: 00:27)

We have already seen that the molar heat capacity of an atomic solid is a function of

temperature and it goes to a constant value as we move to high temperatures and it goes

to 0 as we go to very low temperatures and the value of C v falls to 0 as t cubed and this

is known as the t cubed law.



(Refer Slide Time: 00:56)

We have also seen that if UI use the Einstein model to represent the microstates of the

solid, then I would talk about this model as the solid as a collection of 3 and simple

harmonic oscillators which are present at a given temperature and t and volume v and

each  of  these  oscillators  will  have  an  intrinsic  angular  frequency omega and all  the

values of omega are the same. So, accordingly we used the Einstein model and use the

principles of canonical ensemble and found this expression for C v.

Now, introducing the Einstein temperature what we found is C v can be written entirely

in terms of 3 r the Einstein temperature theta E at a given temperature t. So, the question

was this is an enormous triumph of the basic formulation, but does it work.



(Refer Slide Time: 01:56)

So, one went back and compared the predictions of Einstein model to the experimental

data and it was found that yes the Einstein model, the very simple model of representing

the solid is a collection of 3 and simple harmonic oscillators they correctly it correctly

gives you the high temperature behavior that C v should become a constant as t tends to

infinity. It also correctly predicts that C v should go to 0 as temperature goes to 0, but

there was one shortcoming over here and that is the fall of C v to 0 at low temperatures

that was much faster than that would have been predicted by the t cube law. So, this is a

common problem that is faced by the scientists all throughout the day.

You basically try to understand why should the solid have a heat capacity which is a

function of temperature and you basically wanted to understand it simply in the way we

understood the heat capacity of ideal gases and we compared even the effect of structure

from monatomic to diatomic ideal gases, but what we find here that the simplest model

does not work so; obviously, what one has to do is, one requires a lot more introspection

into the problem especially in the light of the fact that now we have solids and solids as

you are well  aware that  these systems exhibit  the strongest  correlation  and strongest

interaction between their constituent particles.



(Refer Slide Time: 03:48)

So, if we look back at the Einstein model, then we see that there are 2 points that we

would like to investigate.  First can I really express the vibrational frequencies or the

complex  vibrational  frequencies  of  a  solid  has  collection  of  3N independent  simple

harmonic oscillators and even if we can there is a more serious second point that can I

really  assume that  all  these  simple  harmonic  oscillators  will  have  the  same angular

frequency. 

So,  basically  in  the  first  part  of  my lecture  today we will  still  assume that  yes,  the

vibrational  pattern  of  the  solid  can  indeed  be  represented  by  a  collection  of  3N

independent simple harmonic oscillators. I will take up this problem in the second half,

but let us first try and look at the problem with the basic assumption that all the simple

harmonic oscillators have the same frequency which is your Einstein frequency. 



(Refer Slide Time: 04:56)

So,  if  I  look  at  the  vibrational  spectrum  of  a  monatomic  crystal,  typically  in  each

dimension I would represent the an constituent atoms by connecting them in a direction

using  a  simple  harmonic  spring  and  I  would  say  that  if  there  are  3N  independent

vibrational modes. They are going to be represented by this kind of a ball and spring

representation and let me replace that single Einstein frequency by a normal frequency

nu I for each of the 3N modes present in the system. 

Now, as you see that N is a number which is a very large number typically the Avogadro

number. So,  we have  a  very  large  number  of  frequencies  that  are  possible  and  this

frequencies  are  nearly  continuously  distributed  expected  to  be  nearly  continuously

distributed and the there will be, but there will be a finite number of normal frequencies

between say nu and nu plus d nu and let us say that this number is given by g nu d nu.

So, then what is g nu? g nu is a term which is called the density of states. So, in this case

the density of vibrational states.

Now, even if there are a large number of frequencies and they are. So, close to each other

that you can eventually think that they are nearly continuously distributed.  You must

realize that the frequencies of oscillation of all these 3N simple harmonic oscillators are

quantized because we have seen that the quantum of lattice vibration is known as the

photons and that is the basic assumption in the quantum theory of solids that the lattice

vibrations are quantized and then we will call them as a phonons. So, what we are trying



to say here is that even under that restriction, I have a very large number of frequencies

possible, for which it may be more useful to talk in terms of a density of states, but with

1 restriction and that restriction is, I if I sum over all possible values of nu, I must get

back the total number of vibrational modes that I started with. 

So, now, with this concept in mind in instead of the Einstein model, now I have capital 3

into capital N, these many simple harmonic oscillators which are independent of each

other. I have not as yet identified what these simple harmonic oscillators are, but I am

assuming that these the vibrational pattern of the solid can still be represented by the

vibrational  patterns  of  these  3N  simple  harmonic  oscillators,  which  are  oscillating

independent of each other.

(Refer Slide Time: 08:20)

And unlike the Einstein theory now I have assumed that these oscillators each is having a

distinct frequency nu I ok. With this idea one looks back at typically is there anything

like g nu that can be determined from experiments. So, this is typically a density of state

of  vibrational  modes  in  a  real  crystal  which  says  that  the  density  of  states  of  the

vibrational frequencies this actually is a non trivial this has a non trivial dependence on

the allowed values of nu.
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So, let us now revisit the vibrational spectrum of a monatomic crystal and try to use the

concept of the density of states. So, if I use this density of states now the expression for

internal  energy of my system is going to be given by an expression like this and of

course, you can calculate the specific heat of the solid by taking a temperature derivative

on both sides of this expression and this is a resultant expression which follows. You may

care  to  check  the  calculation  yourself  or  you  can  just  try  to  understand,  why  an

expression like this appears doing the mathematical exercise here is not mandatory. 

(Refer Slide Time: 09:35)



So, now that I know that C v can be represented in terms of this term h nu by KT and the

density of states g nu in the Einstein model it was approximated that g nu is 3N into a

Dirac  delta  function,  which  gives  you  a  peak  at  nu  equal  to  nu  E  or  the  Einstein

frequency nu E. 

So, correspondingly if you use the properties of Dirac delta function you put it back in

here, this is the expression that you will get which is the same expression that we have

seen in our previous lecture. So, basically what we are trying to say is that right now if I

assume that the density of states gives you a nonzero peak only at nu equal to nu E, I

retrieve the results that I have got from Einstein model within the present formulation.

Now, let us go ead and try and see how we can improve this because we have already

seen that this is not good enough especially at low temperature. So, what we do next is

we introduce to you the Debye model of heat capacity of crystalline solids.

(Refer Slide Time: 11:01)

So, here there were a few more considerations that turned out to be crucial in analyzing

the low temperature behavior of heat capacity of these solids. At low temperatures you

understand that the available thermal energy to the system is very small as a result of

which only low energy vibrational modes will be excited. Now, we know that the energy

is  inversely  related  to  the  wavelength  of  the  excited  modes  and  therefore,  at  low

temperature  it  is  expected  that  phonons  with  large  wavelength  will  be  excited  and

therefore,  I  would  say  that  at  the  low  temperature  the  solid  would  behave  like  a



continuous elastic body. Now, the study of vibrational patterns in a continuous elastic

body is a very well studied and well investigated field of physics and there you find that

under such condition g nu d nu can be given by an expression like this. So, this is where I

am using the result from known literature of vibrational patterns in a continuous elastic

body and correspondingly Debye introduced this relationship where he said it must be

so,  that  there  will  be  an  upper  limit  to  the  integration  such  that  when  upon  this

integration you get back the finite number of vibrational modes equal to 3N. 

So; obviously, if you plug back this expression that is alpha naught v square into d nu, nu

square into d nu in this expression you can find out what nu d is. Now,when you do this

then what happens is you can eventually write the write the expression for g nu d nu as

this is something into nu square d nu, when the frequency of the vibrational modes are

less than or equal to the Debye frequency and it is equal to 0 for all frequencies, sorry

this must be greater than nu d. When that happens then one can actually go ead and with

this expression of g nu d nu we can find out what the expression for C v is. 

(Refer Slide Time: 13:28)

And this is the expression for C v which of course, can be evaluated in certain limits

using special integrals, but I am not asking you to do that. One can also evaluate this

function C v as a function of temperature by carrying out this integration numerically,

but here what I would like you to note is that here I have introduced the concept of

Debye temperature just like the Einstein temperature and now my C v is dependent on



this theta d because this theta d appears in the upper limit of the integration and which is

a rather complicated integration. Now, what have we learned from here? We learnt that if

I  want  to  give  some  input  about  the  density  of  states  of  the  allowed  vibrational

frequencies of the solid which would mimic something like the real cases that we see,

then it is indeed possible to obtain an expression for C v that is expected to do a little

better than what the results we had for the Einstein solid.

(Refer Slide Time: 14:42)

So, let us next check if the Debye theory was successful. It was found that the Debye

theory correctly predicted the approach of specific heat to 0 at low temperatures and it

was applicable for a wide range of systems and if you plot the plot the low temperature

behavior as a function of t cubed, you do get a linear behavior. Now, in the light of this.

So, there are 2 lessons that we have learnt. 

The first lesson is we assume that the solid can still be represented as a collection of 3N

simple harmonic oscillators and then we said that for a realistic solid it is not only 1

frequency that matters, but there may be a range of frequencies starting from 0 and going

up to a certain cutoff and upper limit, that is required to describe the vibrational pattern

of a solid. So, that I will say that these are the vibrational modes that will be excited

when I supply thermal energy to the solid and this is a reason why this excitation of these

vibrational modes is a reason why the thermal the specific heat of the solid will exhibit a

temperature dependent behavior.



Now, let us go back and look at the mass and spring model of the crystalline solid in a

little closer.

(Refer Slide Time: 16:21)

So, this is how I am representing the mass m of an atom in a crystalline solid at the

lattice positions and these are strongly interacting with their neighbors as a result each

pair of neighbor is connected by a harmonic spring. So, as you see that these are the

neighbors that I am talking about for this particular atom. 

So, it has two neighbors in this direction and if I go in this direction as I have shown in

this figure there is another one connected to it as a spring. Now, in this model what we

understand is that the springs are the inter atomic forces that each atom feels when it is

sitting at its lattice point and therefore, as it moves if any of these atoms they want to

move,  then  there  will  be  a  net  force  acting  on  it  that  will  restore  this  atom  to  its

equilibrium position ok.

 So,  when you supply  thermal  energy  to  the  system these  atoms  have  some excess

thermal energy at their disposal which they are going to use to execute this motion, but

the moment they start moving there is a restoring force acting on it putting it back to its

original  position.  So, basically  then what we are looking at is this  jumble of springs

connected to each other will give you a very complex vibrational pattern and therefore,

the amount of energy that would be required to heat up this system to a certain extent

will be guided by the underlying complex vibrational pattern.
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So, let us have a look as to what we can say about this kind of connected ball and spring

model of the solid. So, as you see this is the picture where I have shown the equilibrium

position of the atoms at the lattice points. So, this is where the ith atom is located at rest,

this is where the I plus oneth atom is located at rest and this is the spacing lattice spacing

between  them  and  their  strong  interaction  is  represented  by  this  harmonic  spring

connecting them to each other. 

Now, if  it  so  happens  that  from  its  equilibrium  position  the  ith  atom  undergoes  a

displacement which is says psi I, then since this is connected to this it may so happen

that this will undergo a displacement like this. So, this is the displacement of the I plus

oneth atom in the lattice and let me denote it as psi of I plus 1.

So, what I understand is because of the connected nature of the movement of the atoms

the total potential energy as the as the atoms move about, they are it is going to be a

function of psi 1, psi 2 etcetera upto psi n. So, this quantity is actually psi 2. So, now,

what happens is in the next phase, I can very easily say that well if I have a solid a stable

solid then the atoms will  be able to execute only small  amplitude vibrational  motion

around their respective equilibrium position. 

So, I can expand this potential energy about the equilibrium, mean equilibrium position

with respect to each of the atoms constituting it. So, that this is the potential energy when

all the atoms are at their mean equilibrium position. This is the term which is del U del



psi 0, that is the first derivative term which has the first order displacement at each of the

lattice sides psi I and then this is the term which tells me that this is quadratic in the

displacements and this is the second order derivative of u with respect to psi I and psi j.

So, this is standard Taylor expansion.

Now, what I understand is since the system is going to exhibit most stable configuration

at equilibrium, where all the atoms are present at their respective lattice points, therefore,

these derivatives evaluated are evaluated at those equilibrium positions and since the

potential energy must be having a minimum this first derivative must go to zero.

(Refer Slide Time: 21:14)

So, that basically tells me that under such condition, I should be able to write the total

potential  energy of  the  solid  as  a  constant  term plus  a  term that  is  quadratic  in  the

displacements or in other words I can introduce a spring constants Jij representing the

coupling of the displacement psi i and psi j and I would say that u is a u represents the

potential energy of a system of coupled simple harmonic oscillators, but that does not

help us we do not know how to solve the Schrodinger equation or for this kind of system

even for a smaller number of particles.
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And therefore, what one does is, one tries to figure out those combinations where I can

treat these coupled vibrations as normal vibrations, which are a collection of vibrational

modes which are executed independent of each other. So, in this particular case as you

see I am highlighting over here 1 normal mode when the 2 atoms are moving in phase

and there is another one which are moving not in phase, but out of phase to each other.

So, if I take this as oscillator 1 and if I take this as oscillator 2, then these 2 represent the

vibrational pattern of these 2 coupled simple harmonic oscillators effectively.

(Refer Slide Time: 22:56)



So, this is the role of the normal modes of vibration. So, what is it that a normal mode of

vibration will give me? Let us say that I start with a solid having capital N atoms. Then

the total  number of degrees of freedom is 3N minus 6, but for N equal to Avogadro

number this is practically equal to 3N. So, what basically we are trying to do is, we are

trying to replace this representation by this representation and it is indeed a challenge to

find out this normal coordinates qi s which will have these intrinsic angular frequencies

omega is such that the total potential  energy, now can be represented in terms of 3N

independent simple harmonic oscillators. 

Now, please try to understand that here these are the atomic displacements which are

coupled to each other in the solid and here qis are some functions of these psi is and psi

js  which  are so defined such that  this  combinations  q 1,  q 2,  q 3 this  behave these

vibrational  modes  they  behave  independent  of  each  other.  So,  we  can  say  that  the

conclusion from this exercise is that each normal mode represents an independent simple

harmonic mode of vibration having a  single frequency. For a given normal  mode or

atoms vibrate with the same frequency and the vibration of a solid is a superposition of

all normal modes of vibration and now this tells us that if I want to visualize the normal

modes in simple real cases.

(Refer Slide Time: 24:47)

Then let us take up the normal vibrations in a monatomic solid, where let us try to think

about the wave like vibrations of the crystal that has only 1 atom in the primitive cell and



basically  here  description  of  the  wave  like  vibration  is  essentially  correlating  the

frequency omega of the lattice wave in terms of the wave vector  k and the simplest

mathematical modeling that is possible here is, if I consider the propagation of the lattice

wave in certain directions like as you see this is the 100 direction of the cubic crystal or

this is 111 direction of the cubic crystal. So, what I am talking about is the monitoring

the propagation of the lattice wave along these directions.

(Refer Slide Time: 25:36)

Now, when we talk about these. So, along these directions and along the planes that I

have shown in the previous slide, let us say these are the regular arrangement of atoms

and if when a wave propagates in any such direction then what will happen this all these

planes of atoms will move in phase with displacements either parallel or perpendicular to

the direction of the wave vector K.



(Refer Slide Time: 26:11)

Now, let us try and understand this by taking the actual example of what will happen

when this equilibrium picture of a particular direction of propagation this is the direction

of  propagation  of  the  wave  vector  K  and  I  have  linear  arrays  of  the  atoms  in  this

direction  arranged  in this  direction  and then  what  is  I  am saying is  by  choosing to

represent the situation in this direction, I can describe the propagation of the lattice wave

in terms of a single coordinate which is shown here as Us.

 So, if this is my sth plane, this is a neighboring plane which is s minus oneth plane and

this is a neighboring plane s plus oneth plane ok. If this plane undergoes a displacement

when a lattice wave passes through this direction, then I would say that I am looking at

the displacement of the place plane s from its equilibrium position as the lattice wave

progresses. Now, as you understand for each wave vector, there can be 3, directions there

can be a longitudinal propagation which is the movement of this displacement of this

plane parallel to the direction of K and the there can be other displacements like 1 is

perpendicular to the direction of K in the plane of the board and the other one must be

perpendicular to the plane of the board.
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Now, let  us have a look at  what these displacements  might  look like.  So,  this  is the

representation. So, if this is the equilibrium distribution in the plane of our choice in the

direction of the propagation of the wave vector K. So, I see that U s minus 1 has moved

here.  U  s  has  stayed  here,  but  Us  plus  1  has  moved  here.  So,  I  am  looking  at

displacement of these planes of atoms parallel to the direction of K, either in the plus K

direction or minus K direction. 

(Refer Slide Time: 28:22)



We can also think of displacement of the planes of atom perpendicular to K. So, if you

compare these 2 pictures as you see Us remain the same, but this plane has moved in this

direction perpendicular to the direction of Kand this plane has moved downward where

each atom has moved downward in a direction perpendicular to K.

(Refer Slide Time: 28:47)

So,  basically  then,  one  can  write  down the  total  force  on  the  plane  in  terms  of  the

displacement or the force acting on it because of its coupling to its nearest neighbor. So,

s will be coupled to the atom, then the s plane will be coupled to atoms on the s plus

oneth plane and s minus oneth plane. So, the equation of motion of each atom on the sth

plane  will  be  given  by  an  equation  like  this  which  is  a  difference  equation  in

displacements and it has a solution which is known as a traveling wave solution and it is

given by this.

So, what happens here is that the specific way this wave is going to propagate, now will

depend on the relationship between omega that is a intrinsic angular frequency and the

wave vector K and this dispersion relation in a monatomic lattice can be obtained from

by solving these equations and you find that omega is proportional to sin of half Ka.
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Now,  these  are  the  dispersion  relations  that  are  usually  plotted  and  measured  in

experiments.  So,  this  is  typically  what  is  known  as  the  dispersion  relation  in  a

monatomic lattice and as you see as K goes to 0,

the  omega  is  nearly  linear  and  if  you  look  at  the  overall  different  modes  like  the

longitudinal modes and transverse modes you see that there are 1 longitudinal and 2

transverse modes, but as you see here I am calling them acoustic modes, that is simply

because in the limit where omega is proportional to K, you see essentially the sound



waves propagating through the medium because of the because of the vibrations that are

excited. So, if I go back and have a look at what is happening at K going to 0, I find that

here I have phonons with frequency which goes to 0.

(Refer Slide Time: 30:43)

In the limit of small k and these are known as acoustical phonons and this is how they

look like and what I am showing to you is the long wavelength acoustical vibration that

will correspond to the transverse acoustical, one of the transverse acoustical modes. So,

these are representations of the typical normal modes of vibration in a real solid.

(Refer Slide Time: 31:18)



.

(Refer Slide Time: 31:27)

You can have representations of these systems in a more complicated situation where I

have a lattice with 2 atoms per primitive cell and here once again, one can write down

the equations of motion of the sth plane, but now you have 2 types of planes, one is

associated with the blue atom another one is associated with the purple atom.

(Refer Slide Time: 31:43)



And once again if you solve you find that this is the equation that you need to understand

in  to  need  to  solve  in  order  to  understand  what  frequencies  are  possible  for  the

propagation of vibrational waves through a lattices like this.

(Refer Slide Time: 32:01)

And then you find that there are 2 possible for small values of k, there are 2 possible

solutions. For, one set of solutions you have the acoustical modes as before which goes

to 0 as k goes to 0, but now you see because of the underlined change in the structure of

the solid, you have an additional value of omega and this is known as the optical mode.
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I will explain to you what these 2 modes look like. So, as you see in the acoustic modes

both type of atoms move in phase with each other and they go and their frequencies go to

0 as k goes to 0, but when I have the optical modes, you see that the brown atoms are

moving out of phase with the blue atoms that atom of type 2 and if it so, happened that

they carried charges. So, this had a positive charge and this has had a negative charge,

this kind of vibrational patterns will generate a charge separation which then will be able

to  couple  to  incoming  light,  that  is  the  only  way  a  photon  can  come  interact  with

impinging light in the system and that is the reason why this type of vibrational modes

are called optical modes.

(Refer Slide Time: 33:23)

 And if  you go out  and look at  the actual  experimental  data,  you will  find  that  for

example, as I have shown here for germanium and 80 Kelvin, you can actually find out

all  the different types of longitudinal  acoustic modes, a transverse acoustic modes or

longitudinal optical mode or transverse optical mode.



(Refer Slide Time: 33:44)

So,  these  are  the  typical  representations  of  these  normal  modes  in  this  kind  of  1

dimensional diatomic chain and the take home message over here is that each of these

vibrational modes behave as if they are independent simple harmonic oscillators in this

given solid.

(Refer Slide Time: 34:12)

Therefore I would say that the for if I have a very complicated solid, say there are 3N

atoms or 3p atoms in the p atoms in the primitive cells in the 3 dimension, there are 3p

branches to their dispersion relation and this tells me that you still will have a very large



number of frequencies to talk about and you will have to look at what these different

acoustical branches are and what the optical branches are and interpret the density of

states of the vibrational frequencies accordingly.

(Refer Slide Time: 34:47)

What went right for Debye theory? In the Debye theory, this is the approximation that is

being used to represent the density of states, I. have written d omega as a function of

omega which is equivalent to representing g nu as a function of nu ok. Now, as you see

that this actually gives me nu as a function of nu square, g nu as a function of nu square.

And if you compare it to the case where you have the phonon spectrum for a real solid

you see that this is valid for low frequency behavior of the density of states and these

modes are excited at low temperature. So, what went right for Debye theory was that

Debye could propose the correct form of the density of states at low temperatures and

therefore, that is the reason why the Debye theory could successfully predict the low

temperature behavior of a given solid. 

I must leave with this last warning. I have used a lot of concepts from solid state physics

today. You are not required to go back and look up the entire syllabus of a solid state

physics, which is covered typically in undergraduate physics course. The message I want

you to have is in order to understand what is happening in an experiment you really have

to probe deep and try to understand the behavior of a given system not only in terms of a



simple model that is useful to you, but borrow the language from other systems, other

limiting behavior of the same type of systems and use them to construct a better model.

Thank you.


